Sugar Esters Microemulsions


Book Description

Sugar Esters Microemulsions covers recent advances in the formulation, characterization and applications of sugar esters microemulsions. This book comprehensibly covers a decade of experience on using sugar surfactants for various applications. It enables researchers in the field to follow a tested methodology in choosing the best sugar surfactant formulation that fits an application of interest. This book is the ultimate reference for all those in industry or academy working in the field of microemulsions in general and sugar esters in particular. Provides a timely reference for those working in research and development as well as academic scientists in the colloid and surface science field Presents a succinct summary on recent research, eliminating the need to search through a multitude of resources for critical information Complements existing books on microemulsions which take the more traditional approach of reviewing the fundamental aspects of the subject Examines recent advances in the formulation and characterization of the properties of sugar ester microemulsions for various applications Provides case studies in each chapter to clarify theoretical material




Food Emulsifiers and Their Applications


Book Description

Emulsifiers, also known as surfactants, are often added to processed foods to improve stability, texture, or shelf life. These additives are regulated by national agencies, such as the FDA, or multi-national authorities, such as the EEC or WHO. The amphiphilic molecules function by assisting the dispersion of mutually insoluble phases and stabilizing the resulting colloids, emulsions, and foams. Emulsifiers can interact with other food components such as carbohydrates, proteins, water, and ions to produce complexes and mesophases. These interactions may enhance or disrupt structures and affect functional properties of finished foods. In dairy processing, small molecule emulsifiers may displace dairy proteins from oil/water and air/water interfaces, which affects stability and properties of the foams and emulsions. In baked products, emulsifiers contribute to secondary functionalities, such as dough strengthening and anti-staling. Synthetic food emulsifiers suffer from the stigma of chemical names on a product’s ingredient statement. Modern consumers are seeking products that are “all natural.” Fortunately, there are a number of natural ingredients that are surface-active, such as lecithin, milk proteins, and some protein-containing hydrocolloids. Mayonnaise, for example, is stabilized by egg yolk. This book can serve as both a guide for professionals in the food industry to provide an understanding of emulsifier functionality, and a stimulus for further innovation. Students of food science will find this to be a valuable resource.







Microemulsions and Emulsions in Foods


Book Description

This new book focuses on microemulsions with ingestible systems applicable to foods and relates them to the more-studied field of emulsions. It covers many of the more innovative approaches to emulsion stability in foods, presents the results of some initial investigations into food microemulsions, and compares the two types of systems. Among the specific topics discussed are synthesis in microemulsions media, phase behavior of sucrose esters, emulsions stabilized by proteins, novel nondestructive methods for measuring emulsion stability, and more.




Microemulsions


Book Description

The effective use of microemulsions has increased dramatically during the past few decades as major industrial applications have expanded in a variety of fields. Microemulsions: Properties and Applications provides a complete and systematic assessment of all topics affecting microemulsion performance and discusses the fundamental characteristics, t




Microemulsions and Related Systems


Book Description

Beginning with P.A. Winsor's fundamental hypothesis on a natural interfacial curvature depending on the values of the formulation variables, this unique book shows scientists how to understand the intrinsic structure of these complex systems and their corresponding physical properties... predict how a change in one formulation variable (surfactant structure, oil structure, aqueous phase composition, temperature, etc.) will modify the microemulsion... and systematically formulate microemulsions for individual applications.This book provides a thermodynamic analysis supporting the existence of natural interfacial curvature... compares the behavior of commercial surfactant mixtures and pure isomeric surfactant molecules in order to point out differences and similarities highly significant for various uses... explains how micelles can evolve smoothly and continuously toward solutions containing large quantities of oil and water... gives procedures for fixing quantitative relationships among formulation variables... plus much more.Illustrated with more than 200 diagrams, tables, and photographs, and completely referenced, this superb volume is essential reading for surfactant, colloid, and physical chemists in both academe and industry, as well as chemical engineers, biotechnologists, and petroleum engineers.Contents: 1. The R-Ratio. 2. Aqueous solutions containing amphiphiles. 3. Nonpolar solutions containing amphiphiles. 4. The phase behavior and properties of solutions containing amphiphiles, organic liquids, and water: micellar solutions. 5. Methods for promoting phase changes. 6. Compensating changes between formulation variables. 7. Solubilization. 8. Thermodynamics of solubilized systems.




Emulsifiers in Food Technology


Book Description

Emulsifiers are essential components of many industrial food recipes. They have the ability to act at the interface between two phases, and so can stabilise the desired mix of oil and water in a mayonnaise, ice cream or salad dressing. They can also stabilise gas/liquid mixtures in foams. More than that, they are increasingly employed in textural and organoleptic modification, in shelf life enhancement, and as complexing or stabilising agents for other components such as starch or protein. Applications include modifying the rheology of chocolate, the strengthening of dough, crumb softening and the retardation of staling in bread. This volume, now in a revised and updated second edition, introduces emulsifiers to those previously unfamiliar with their functions, and provides a state of the art account of their chemistry, manufacture, application and legal status for more experienced food technologists. Each chapter considers one of the main chemical groups of food emulsifiers. Within each group the structures of the emulsifiers are considered, together with their modes of action. This is followed by a discussion of their production / extraction and physical characteristics, together with practical examples of their application. Appendices cross-reference emulsifier types with applications, and give E-numbers, international names, synonyms and references to analytical standards and methods. This is a book for food scientists and technologists, ingredients suppliers and quality assurance personnel.




Microemulsions


Book Description




Properties and Uses of Microemulsions


Book Description

Properties and Uses of Microemulsions is intended to provide the reader with some important applications and features of these systems. The intricate composition of microemulsions has made them applicable in many areas such as cosmetics, pharmaceuticals, food, agriculture, oil recovery, chemical synthesis of nanoparticles, and catalysts. An introductory chapter starts off with the description of these applications followed by methods of characterization. Thereafter, a few practical applications of microemulsions focusing on drug delivery, oil recovery, and formation of nanocatalysts are described followed by the third section discussing the theoretical and physical parameters predicting microemulsion properties. The use of spin-polarized paramagnetic probes, bending energetics, and study of self-propelled motion are some of the physical parameters employed to characterize the microemulsions.




Sugar Esters, 1968


Book Description