Commutative Algebra II


Book Description

From the Preface: "topics are: (a) valuation theory; (b) theory of polynomial and power series rings (including generalizations to graded rings and modules); (c) local algebra... the algebro-geometric connections and applications of the purely algebraic material are constantly stressed and abundantly scattered throughout the exposition. Thus, this volume can be used in part as an introduction to some basic concepts and the arithmetic foundations of algebraic geometry."




Clifford Algebras and their Applications in Mathematical Physics


Book Description

This volume contains selected papers presented at the Second Workshop on Clifford Algebras and their Applications in Mathematical Physics. These papers range from various algebraic and analytic aspects of Clifford algebras to applications in, for example, gauge fields, relativity theory, supersymmetry and supergravity, and condensed phase physics. Included is a biography and list of publications of Mário Schenberg, who, next to Marcel Riesz, has made valuable contributions to these topics. This volume will be of interest to mathematicians working in the fields of algebra, geometry or special functions, to physicists working on quantum mechanics or supersymmetry, and to historians of mathematical physics.




Nonlinear Programming


Book Description




Activity and Sign


Book Description

The advancement of a scientific discipline depends not only on the "big heroes" of a discipline, but also on a community’s ability to reflect on what has been done in the past and what should be done in the future. This volume combines perspectives on both. It celebrates the merits of Michael Otte as one of the most important founding fathers of mathematics education by bringing together all the new and fascinating perspectives created through his career as a bridge builder in the field of interdisciplinary research and cooperation. The perspectives elaborated here are for the greatest part motivated by the impressing variety of Otte’s thoughts; however, the idea is not to look back, but to find out where the research agenda might lead us in the future. This volume provides new sources of knowledge based on Michael Otte’s fundamental insight that understanding the problems of mathematics education – how to teach, how to learn, how to communicate, how to do, and how to represent mathematics – depends on means, mainly philosophical and semiotic, that have to be created first of all, and to be reflected from the perspectives of a multitude of diverse disciplines.




Galois Groups and Fundamental Groups


Book Description

Table of contents




Lectures on the Geometry of Numbers


Book Description

Carl Ludwig Siegel gave a course of lectures on the Geometry of Numbers at New York University during the academic year 1945-46, when there were hardly any books on the subject other than Minkowski's original one. This volume stems from Siegel's requirements of accuracy in detail, both in the text and in the illustrations, but involving no changes in the structure and style of the lectures as originally delivered. This book is an enticing introduction to Minkowski's great work. It also reveals the workings of a remarkable mind, such as Siegel's with its precision and power and aesthetic charm. It is of interest to the aspiring as well as the established mathematician, with its unique blend of arithmetic, algebra, geometry, and analysis, and its easy readability.




Fundamentals of Advanced Mathematics V2


Book Description

The three volumes of this series of books, of which this is the second, put forward the mathematical elements that make up the foundations of a number of contemporary scientific methods: modern theory on systems, physics and engineering. Whereas the first volume focused on the formal conditions for systems of linear equations (in particular of linear differential equations) to have solutions, this book presents the approaches to finding solutions to polynomial equations and to systems of linear differential equations with varying coefficients. Fundamentals of Advanced Mathematics, Volume 2: Field Extensions, Topology and Topological Vector Spaces, Functional Spaces, and Sheaves begins with the classical Galois theory and the theory of transcendental field extensions. Next, the differential side of these theories is treated, including the differential Galois theory (Picard-Vessiot theory of systems of linear differential equations with time-varying coefficients) and differentially transcendental field extensions. The treatment of analysis includes topology (using both filters and nets), topological vector spaces (using the notion of disked space, which simplifies the theory of duality), and the radon measure (assuming that the usual theory of measure and integration is known). In addition, the theory of sheaves is developed with application to the theory of distributions and the theory of hyperfunctions (assuming that the usual theory of functions of the complex variable is known). This volume is the prerequisite to the study of linear systems with time-varying coefficients from the point-of-view of algebraic analysis and the algebraic theory of nonlinear systems. - Present Galois Theory, transcendental field extensions, and Picard - Includes sections on Vessiot theory, differentially transcendental field extensions, topology, topological vector spaces, Radon measure, differential calculus in Banach spaces, sheaves, distributions, hyperfunctions, algebraic analysis, and local analysis of systems of linear differential equations




Computing Equilibria and Fixed Points


Book Description

Computing Equilibria and Fixed Points is devoted to the computation of equilibria, fixed points and stationary points. This volume is written with three goals in mind: (i) To give a comprehensive introduction to fixed point methods and to the definition and construction of Gröbner bases; (ii) To discuss several interesting applications of these methods in the fields of general equilibrium theory, game theory, mathematical programming, algebra and symbolic computation; (iii) To introduce several advanced fixed point and stationary point theorems. These methods and topics should be of interest not only to economists and game theorists concerned with the computation and existence of equilibrium outcomes in economic models and cooperative and non-cooperative games, but also to applied mathematicians, computer scientists and engineers dealing with models of highly nonlinear systems of equations (or polynomial equations).




Approximation Theorems in Commutative Algebra


Book Description

Various types of approximation theorems are frequently used in general commutative algebra, and they have been found to be useful tools in valuation theory, the theory of Abelian lattice ordered groups, multiplicative ideal theory, etc. Part 1 of this volume is devoted to the investigation of approximation theorems from a classical point of view. The chapters of this part deal with fields and rings, partly ordered groups, and with multirings and d-groups. Part II investigates approximation theorems from a general, categorical point of view. This part is essentially self-contained and requires only a basic knowledge of category theory and first-order logic. For researchers and graduate students of commutative algebra, category theory, as well as applications of logic.