Super-Recursive Algorithms


Book Description

* The first exposition on super-recursive algorithms, systematizing all main classes and providing an accessible, focused examination of the theory and its ramifications * Demonstrates how these algorithms are more appropriate as mathematical models for modern computers and how they present a better framework for computing methods * Develops a new practically-oriented perspective on the theory of algorithms, computation, and automata, as a whole




Super-Recursive Algorithms


Book Description

* The first exposition on super-recursive algorithms, systematizing all main classes and providing an accessible, focused examination of the theory and its ramifications * Demonstrates how these algorithms are more appropriate as mathematical models for modern computers and how they present a better framework for computing methods * Develops a new practically-oriented perspective on the theory of algorithms, computation, and automata, as a whole







Recursive Algorithms


Book Description

Recursion is a topic that is ubiquitous in computer science. This book provides a leisurely and entertaining journey through recursion. It begins with the most basic of recursive algorithms and carefully guides the reader to more advanced applications.




Computing Nature


Book Description

This book is about nature considered as the totality of physical existence, the universe, and our present day attempts to understand it. If we see the universe as a network of networks of computational processes at many different levels of organization, what can we learn about physics, biology, cognition, social systems, and ecology expressed through interacting networks of elementary particles, atoms, molecules, cells, (and especially neurons when it comes to understanding of cognition and intelligence), organs, organisms and their ecologies? Regarding our computational models of natural phenomena Feynman famously wondered: “Why should it take an infinite amount of logic to figure out what one tiny piece of space/time is going to do?” Phenomena themselves occur so quickly and automatically in nature. Can we learn how to harness nature’s computational power as we harness its energy and materials? This volume includes a selection of contributions from the Symposium on Natural Computing/Unconventional Computing and Its Philosophical Significance, organized during the AISB/IACAP World Congress 2012, held in Birmingham, UK, on July 2-6, on the occasion of the centenary of Alan Turing’s birth. In this book, leading researchers investigated questions of computing nature by exploring various facets of computation as we find it in nature: relationships between different levels of computation, cognition with learning and intelligence, mathematical background, relationships to classical Turing computation and Turing’s ideas about computing nature - unorganized machines and morphogenesis. It addresses questions of information, representation and computation, interaction as communication, concurrency and agent models; in short this book presents natural computing and unconventional computing as extension of the idea of computation as symbol manipulation.




Theory of Information


Book Description

Presents a fresh approach to scientific understanding of information phenomena. Based on an analysis of information processes in nature, technology, and society, as well as on the main directions in information theory, this book offers a theory that synthesizes various directions into a unified system.




Information and Computation


Book Description

This volume provides a cutting-edge view of the world's leading authorities in fields where information and computation play a central role.




Advances in Unconventional Computing


Book Description

The unconventional computing is a niche for interdisciplinary science, cross-bred of computer science, physics, mathematics, chemistry, electronic engineering, biology, material science and nanotechnology. The aims of this book are to uncover and exploit principles and mechanisms of information processing in and functional properties of physical, chemical and living systems to develop efficient algorithms, design optimal architectures and manufacture working prototypes of future and emergent computing devices. This first volume presents theoretical foundations of the future and emergent computing paradigms and architectures. The topics covered are computability, (non-)universality and complexity of computation; physics of computation, analog and quantum computing; reversible and asynchronous devices; cellular automata and other mathematical machines; P-systems and cellular computing; infinity and spatial computation; chemical and reservoir computing. The book is the encyclopedia, the first ever complete authoritative account, of the theoretical and experimental findings in the unconventional computing written by the world leaders in the field. All chapters are self-contains, no specialist background is required to appreciate ideas, findings, constructs and designs presented. This treatise in unconventional computing appeals to readers from all walks of life, from high-school pupils to university professors, from mathematicians, computers scientists and engineers to chemists and biologists.







Algorithms


Book Description

Like the first edition, this book is concerned with the study of algorithms and their complexity, and the evaluation of their performance.