Superalloys for Industry Applications


Book Description

In recent years, superalloys have been widespread usage in aerospace gas turbine engine parts. The main reason of it is that these materials have high yield, ultimate tensile strength, and very good corrosion/oxidation resistance, and they combine these good properties with an excellent creep resistance at elevated temperatures. In spite of their outstanding properties, superalloys can lose their mechanical strength because of wear, tear, and crack formation when they are exposed to high-service temperatures and heavy working conditions. Moreover, corrosion is another important issue for superalloys because the materials of gas turbine engine parts are exposed to harsh engine environments, which consist of many pollutants and hot gases. Therefore, special attention must be given to the corrosion behavior of superalloys. This book provides information on the interaction between the microstructure of alloys and their mechanical properties and also the position of superalloys in the manufacturing industry. Topics cover the minimization of the formation of microsegregation and detrimental phases in the GTA welding of superalloys, oxidation kinetics of nickel-based superalloys used in the manufacture of rings for aircraft engines, a review of the work done over the last two decades to understand the hot corrosion behavior of superalloys used in advanced coal-based power plants, ultrasonic-assisted machining of Inconel 718, dry high-speed turning of Ti-6Al-4V titanium alloy, and laser welding in dentistry. The book "Superalloys for Industry Applications" consists of contributions by scientists and engineers who are experienced in the production, design, and analysis of materials from all around the world. We hope that this book will be an irreplaceable source of study for manufacturing, degradation mechanisms, and reliability of superalloys.




The Superalloys


Book Description

Superalloys are unique high-temperature materials used in gas turbine engines, which display excellent resistance to mechanical and chemical degradation. This book introduces the metallurgical principles which have guided their development. Suitable for graduate students and researchers, it includes exercises and additional resources at www.cambridge.org/9780521859042.




Superalloys


Book Description

This book covers virtually all technical aspects related to the selection, processing, use, and analysis of superalloys. The text of this new second edition has been completely revised and expanded with many new figures and tables added. In developing this new edition, the focus has been on providing comprehensive and practical coverage of superalloys technology. Some highlights include the most complete and up-to-date presentation available on alloy melting. Coverage of alloy selection provides many tips and guidelines that the reader can use in identifying an appropriate alloy for a specific application. The relation of properties and microstructure is covered in more detail than in previous books.




Superalloys


Book Description

"This practical guide provides an introduction for understanding the compositional complexity of superalloys superalloy and the wide range of alloys developed for specific applications. The basics of alloying, strengthening mechanisms, and structure of superalloys are explained in optimizing particular mechanical properties, oxidation/corrosion resistance, and manufacturing characteristics such as castability, forgeability, and weldability."--Publisher's description.




Additive Manufacturing Applications for Metals and Composites


Book Description

Additive manufacturing (AM) of metals and composites using laser energy, direct energy deposition, electron beam methods, and wire arc melting have recently gained importance due to their advantages in fabricating the complex structure. Today, it has become possible to reliably manufacture dense parts with certain AM processes for many materials, including steels, aluminum and titanium alloys, superalloys, metal-based composites, and ceramic matrix composites. In the near future, the AM material variety will most likely grow further, with high-performance materials such as intermetallic compounds and high entropy alloys already under investigation. Additive Manufacturing Applications for Metals and Composites is a pivotal reference source that provides vital research on advancing methods and technological developments within additive manufacturing practices. Special attention is paid to the material design of additive manufacturing of parts, the choice of feedstock materials, the metallurgical behavior and synthesis principle during the manufacturing process, and the resulted microstructures and properties, as well as the relationship between these factors. While highlighting topics such as numerical modeling, intermetallic compounds, and statistical techniques, this publication is ideally designed for students, engineers, researchers, manufacturers, technologists, academicians, practitioners, scholars, and educators.




Superalloys


Book Description

Superalloys form a class of the structural materials for high-temperature applications. Nickel superalloys are extensively used in the high-temperature components of gas turbines due to their excellent creep, fatigue, and corrosion resistance at elevated temperatures. These materials are considered paramagnetic in the range of working temperatures. This book presents the features of the ternary phase diagrams Ni-Al-X (X = {Co, Fe, Nb, Ti, Cr}), effects of the alloying on the long-range order and mechanical properties of the Ni3 Al-based alloys. Description of the strain-induced ferromagnetism in the Ni3Al-based alloys and magnetic control of the failure of gas turbine blades are also included. A separate section is devoted to the analysis of the vibration process and strength change in the single-crystal gas turbine blades. This book includes the review of the new intermetallic cobalt superalloys. The structure, crystal lattice parameters, orientation relationships between phases, mechanical and magnetic properties of the Co3(Al,W)-based alloys are described. Non-destructive magnetic point control of the martensite content in low-magnetic austenitic alloys is a new method for detection of the local sites with internal stresses. This method is useful for the detection of the residual stress in the critical parts of industrial products. This book may be useful for specialists in material science, first-year postgraduate students taking a class in material science and engineering, and engineers developing new alloys for the gas turbine technology.




Superalloys 2012


Book Description

A superalloy, or high-performance alloy, is an alloy that exhibits excellent mechanical strength at high temperatures. Superalloy development has been driven primarily by the aerospace and power industries. This compilation of papers from the Twelfth International Symposium on Superalloys, held from September 9-13, 2012, offers the most recent technical information on this class of materials.




Superalloys II


Book Description

A comprehensive review of the latest developments in the pursuit of superalloys.




Powder Metallurgy of Superalloys


Book Description

Powder Metallurgy of Superalloys details the advancement of powder metallurgy in the context of producing superalloys. The book is comprised of nine chapters that cover the underlying principles of superalloys produced through powder metallurgy. The text first covers concerns in pre-alloyed dispersion-free powders, such as powder production and characterization; powder consolidation methods; and quality control and non-destructive evaluation of P/M superalloys. The next chapter talks about oxide-dispersion-strengthened superalloys. Next, the book discusses joining techniques for P/M superalloys and the practical applications of P/M superalloys. The title will be of great use to professionals in the materials manufacturing industry.




Superalloys, Supercomposites and Superceramics


Book Description

Superalloys, Supercomposites and Superceramics reviews the state of superalloy technology and some of the more salient aspects of alternative high temperature systems such as superceramics and supercomposites. Superalloy topics range from resource availability to advanced processing such as VIM, VAR, and VADAR, along with investment casting and single crystal growth, new superplastic forming techniques and powder metallurgy, structure property relationships, strengthening mechanisms, oxidation, hydrogen embrittlement, and phase predictions. This book is comprised of 22 chapters that explore key issues of high temperature materials in a synergistic manner. The first chapter reflects on the growth of the superalloy industry and its technology over the past 40 years. The discussion then turns to some of the trends in superalloy development, focusing on what is understood to be meant by the term strategic materials and the current status of resources and reserves in the United States. Particular attention is given to the supply sources and availability of strategic materials. The results achieved from the research program undertaken by NASA Lewis Research Center named Conservation Of Strategic Aerospace Materials (COSAM) are also presented. The chapters that follow explore alternative high temperature systems such as intermetallics, fiber reinforced superalloys, and the processing and high temperature properties of ceramics and carbon-carbon composites. This book will be a valuable resource for professionals and graduate students interested in learning about superalloys, supercomposites, and superceramics.