Superconducting Magnet Systems


Book Description

The renaissance of magnet technology started in the early 1950s with the establishment of high-energy accelerators. About a decade later in 1961, or fifty years after the discovery of superconductivity, high-field superconducting laboratory magnets became a reality. Conventional still the major beam-handling and experimen electromagnets, which are tal devices used in laboratories, operate at zero efficiency. To generate high magnetic fields in a useful volume, considerable amounts of power are needed. Superconducting d. c. magnets do not require any power at all. It is somewhat depressing to note that, sixty years after the first superconductor was tested, the experimental d. c. superconducting mag net is still the only large-scale equipment operated in laboratories. Al though there has been considerable activity in the area of superconduc tivity, superconductors are used on quite a modest scale in electronic and quantum devices, in medicine and biology, and in physical experi ments where high magnetic fields are essential. It is only recently that Type II superconductors have been introduced in power engineering (power generation, storage and transport) to replace pulsed accelerator magnets; for fast and economical transportation vehicles (levitated trains) where superconductors may ultimately replace the wheel; to make new means of en~rgy generation economically feasible, such as in magneto hydrodynamics and in fusion reactors; and for high-efficiency electric motors. High-field superconducting magnets are being proposed for de salination of seawater, for magnetic separation in the mining industry, for cleaning polluted water, and for sewage treatment.




Fundamentals of Magnetic Thermonuclear Reactor Design


Book Description

Fundamentals of Magnetic Thermonuclear Reactor Design is a comprehensive resource on fusion technology and energy systems written by renowned scientists and engineers from the Russian nuclear industry. It brings together a wealth of invaluable experience and knowledge on controlled thermonuclear fusion (CTF) facilities with magnetic plasma confinement – from the first semi-commercial tokamak T-3, to the multi-billion international experimental thermonuclear reactor ITER, now in construction in France. As the INTOR and ITER projects have made an immense contribution in the past few decades, this book focuses on its practical engineering aspects and the basics of technical physics and electrical engineering. Users will gain an understanding of the key ratios between plasma and technical parameters, design streamlining algorithms and engineering solutions. - Written by a team of qualified experts who have been involved in the design of thermonuclear reactors for over 50 years - Outlines the most important features of the ITER project in France which is building the largest tokamak, including the design, material selection, safety and economic considerations - Includes data on how to design magnetic fusion reactors using CAD tools, along with relevant regulatory documents




Superconducting Accelerator Magnets


Book Description

The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements on field quality in large storage rings. The operational experience with the superconducting HERA collider serves as an illustration. Finally superconducting correction coils and practical construction and fabrication methods of accelerator magnets are discussed. The physical and technical principles described in the book are substantiated with a wealth of experimental data on multipoles, persistent- and eddy-current effects, quench performance and much more.







Superconducting Technology


Book Description

This book contains an interdisciplinary selection of timely articles which cover a wide range of superconducting technologies ranging from high tech medicine (10-12 Gauss) to multipurpose sensors, microwaves, radio engineering, magnet technology for accelerators, magnetic energy storage, and power transmission on the 109 watt scale. It is aimed primarily at the non-specialist and will be suitable as an introductory course book for those in the relevant fields and related industries. As shown in the title several examples of high-c applications are included. While low-Tc is still the leading technology, for instance, in cables and SQUIDS, case studies in these areas are presented.




Superconductivity


Book Description

This book presents the basics and applications of superconducting magnets. It explains the phenomenon of superconductivity, theories of superconductivity, type II superconductors and high-temperature cuprate superconductors. The main focus of the book is on the application to superconducting magnets to accelerators and fusion reactors and other applications of superconducting magnets. The thermal and electromagnetic stability criteria of the conductors and the present status of the fabrication techniques for future magnet applications are addressed. The book is based on the long experience of the author in studying superconducting materials, building magnets and numerous lectures delivered to scholars. A researcher and graduate student will enjoy reading the book to learn various aspects of magnet applications of superconductivity. The book provides the knowledge in the field of applied superconductivity in a comprehensive way.




Case Studies in Superconducting Magnets


Book Description

The 2nd edition emphasizes two areas not emphasized in the 1st edition: 1) high-temperature superconductor (HTS) magnets; 2) NMR (nuclear magnetic resonance) and MRI (magnetic resonance imaging) magnets. Despite nearly 40 years of R and D on superconducting magnet technology, most areas, notably fusion and electric power applications, are still in the R and D stage. One exception is in the area of NMR and MRI. NMR magnets are very popular among chemists, biologists, genome scientists, and most of all, by drug manufacturers for drug discovery and development. MRI and NMR magnets have become the most successful application of superconducting magnet technology and this trend should continue. The 2nd edition will have new materials never treated formally in any other book of this kind. As with the 1st, most subjects will be presented through problem format to educate and train the designer.




High Magnetic Field Science and Its Application in the United States


Book Description

The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the strength and current-carrying capacity of the materials that create the field. Although lower magnetic fields can be achieved using commercially available magnets, research in the highest achievable fields has been, and will continue to be, most often performed in large research centers that possess the materials and systems know-how for forefront research. Only a few high field centers exist around the world; in the United States, the principal center is the National High Magnetic Field Laboratory (NHMFL). High Magnetic Field Science and Its Application in the United States considers continued support for a centralized high-field facility such as NHFML to be the highest priority. This report contains a recommendation for the funding and siting of several new high field nuclear magnetic resonance magnets at user facilities in different regions of the United States. Continued advancement in high-magnetic field science requires substantial investments in magnets with enhanced capabilities. High Magnetic Field Science and Its Application in the United States contains recommendations for the further development of all-superconducting, hybrid, and higher field pulsed magnets that meet ambitious but achievable goals.




Case Studies in Superconducting Magnets


Book Description

Designed for graduate students in mechanical engineering, this textbook discusses the basic concepts of superconducting magnet technology. Important topics covered include field distribution, magnets, force, thermal stability, dissipation, and protection. To help the students excel in the field, each chapter contains tutorial problems, accompanied by solutions, utilizing solenoidal magnets as examples.




100 Years of Superconductivity


Book Description

Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in supe