Superconductivity in Ternary Compounds I


Book Description

The structural. electronic and lattice properties of superconducting ternary com pounds are the subject of this Topics volume. Its companion volume (Topics in Cur rent Physics. Volume 34) deals primarily with the mutual interaction of supercon ductivity and magnetism in ternary compounds. These two volumes are the culmination of a project. started nearly two years ago. that was inspired by the intense re search effort. both experimental and theoretical. then being expended to explore and develop an understanding of the remarkable physical properties of ternary super conductors. Research activity on this subject has increased in the meantime. The interest in ternary superconductors originated in 1972. when B.T. Matthias and his co-workers first discovered superconductivity in several ternary molybdenum sulfide compounds that had been synthesized in 1971 by R. Chevrel. M. Sergent. and J. Prigent. The superconducting critical temperature Tc of one of the compounds. PbMo S • was reported to be ~ 15 K. This value is sufficiently high that there was g 6 (and still is) reason to expect that other ternary compounds would be found with superconducting transition temperatures rivaling those of the A15 compounds. of which Nb Ge has the record high Tc of 23 K. The interest in ternary superconductors 3 received further impetus when several of the ternary molybdenum sulfides were found to have exceptionally high upper critical magnetic fields. some of them in the neighborhood of 50 Tesla or more. An immense amount of research on ternary molybdenum chalcogenides then followed.







Superconductivity in Ternary Compounds I


Book Description

The structural. electronic and lattice properties of superconducting ternary com pounds are the subject of this Topics volume. Its companion volume (Topics in Cur rent Physics. Volume 34) deals primarily with the mutual interaction of supercon ductivity and magnetism in ternary compounds. These two volumes are the culmination of a project. started nearly two years ago. that was inspired by the intense re search effort. both experimental and theoretical. then being expended to explore and develop an understanding of the remarkable physical properties of ternary super conductors. Research activity on this subject has increased in the meantime. The interest in ternary superconductors originated in 1972. when B.T. Matthias and his co-workers first discovered superconductivity in several ternary molybdenum sulfide compounds that had been synthesized in 1971 by R. Chevrel. M. Sergent. and J. Prigent. The superconducting critical temperature Tc of one of the compounds. PbMo S • was reported to be ~ 15 K. This value is sufficiently high that there was g 6 (and still is) reason to expect that other ternary compounds would be found with superconducting transition temperatures rivaling those of the A15 compounds. of which Nb Ge has the record high Tc of 23 K. The interest in ternary superconductors 3 received further impetus when several of the ternary molybdenum sulfides were found to have exceptionally high upper critical magnetic fields. some of them in the neighborhood of 50 Tesla or more. An immense amount of research on ternary molybdenum chalcogenides then followed.




Superconductivity in Ternary Compounds II


Book Description

With contributions by numerous experts




Superconductivity


Book Description

This extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in superconductivity. Covering the entire field, this unparalleled resource carefully blends theoretical studies with experimental results to provide an indispensable foundation for further research. Leading researchers, including Nobel laureates, describe the state of the art in conventional and unconventional superconductors. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued, intense research into electron-phone based superconductivity.







Proceedings of the Yamada Conference XVIII on Superconductivity in Highly Correlated Fermion Systems


Book Description

Superconductivity in Highly Correlated Fermion Systems documents the proceedings of the Yamada Conference XVIII on Superconductivity in Highly Correlated Fermion Systems held in Sendai, Japan, from August 31 to September 3, 1987. This book compiles selected papers on the experimental and theoretical advances in the study of superconductivity. The topics include the superconductivity and magnetism in heavy-electron materials, magneto-resistance of heavy-fermion compounds, and magnetic fluctuations and order in exotic superconductors. The fabrication and properties of thin superconducting oxide films, bipolaron models of superconductors, superconducting properties of superlattices, and flux quantization on quasi-crystalline networks are also covered. This publication is recommended for physicists and students researching on the superconductivity in highly correlated fermion systems.




Theory of Heavy Fermions and Valence Fluctuations


Book Description

This volume contains the proceedings of the Eighth Taniguchi Interna tional Symposium on the Theory of Condensed Matter, which was held at Shima Kanko Hotel in Shima, Japan, 10-13 April 1985. The topic of the Symposium was Valence Fluctuation and Heavy Fermion Systems, one of the most fundamental problems in present-day condensed matter physics. The dilute Kondo problem, which is one of the most typical and unique many-body problems in condensed matter physics, developed recently into the dense Kondo and the coherent Kondo lattice problems in the 4f elec tron systems. It is accepted now that a large degeneracy in f-electron systems makes this latter situation possible by enhancing the single-site Kondo state relative to the inter-site magnetic interactions. Now, anoma lous behavior in f-electron systems show rich variety and are called valence fluctuation phenomena as a whole. They have, however, a common fea ture. In the lowest temperature region, they show either heavy Fermion like character or a narrow gap formation at the Fermi energy. Discovery of superconductivity in the heavy Fermion systems is attracting more in terest. Anyway, the valence fluctuating states are thought to be of fun damental importance to bridge the gap between the localized magnetic states and the delocalized nownagnetic states.