Superconductors in the Power Grid


Book Description

Superconductors offer high throughput with low electric losses and have the potential to transform the electric power grid. Transmission networks incorporating cables of this type could, for example, deliver more power and enable substantial energy savings. Superconductors in the Power Grid: Materials and Applications provides an overview of superconductors and their applications in power grids. Sections address the design and engineering of cable systems and fault current limiters and other emerging applications for superconductors in the power grid, as well as case studies of industrial applications of superconductors in the power grid. - Expert editor from highly respected US government-funded research centre - Unique focus on superconductors in the power grid - Comprehensive coverage




Magneto-Optical Imaging


Book Description

Magneto-Optical Imaging has developed rapidly over the last decade to emerge as a leading technique to directly visualise the static and dynamic magnetic behaviour of materials, capable of following magnetic processes on the scale of centimeters to sub-microns and at timescales from hours to nanoseconds. The images are direct, real-time, and give space-resolved information, such as ultrafast magnetic processes and revealing the motion of individual vortices in superconductors. The book is a fully up-to-date report of the present status of the technique.




Applications of High Temperature Superconductors to Electric Power Equipment


Book Description

The only one-stop reference to design, analysis, and manufacturing concepts for power devices utilizing HTS. High temperature superconductors (HTS) have been used for building many devices for electric grids worldwide and for large ship propulsion motors for the U.S. Navy. And yet, there has been no single source discussing theory and design issues relating to power applications of HTS—until now. This book provides design and analysis for various devices and includes examples of devices built over the last decade. Starting with a complete overview of HTS, the subsequent chapters are dedicated to specific devices: cooling and thermal insulation systems; rotating AC and DC machines; transformers; fault current limiters; power cables; and Maglev transport. As applicable, each chapter provides a history of the device, principles, configuration, design and design challenges, prototypes, and manufacturing issues, with each ending with a summary of the material covered. The design analysis and design examples provide critical insight for readers to successfully design their own devices. Original equipment manufacturer (OEM) designers, industry and utilities users, universities and defense services research groups, and senior/postgraduate engineering students and instructors will rely on this resource. "HTS technology reduces electric losses and increases the efficiency of power equipment. This book by Swarn Kalsi, a leading expert on the HTS subject, provides a survey of the HTS technology and the design rules, performance analyses, and manufacturing concepts for power application-related devices. It compares conventional and HTS technology approaches for device design and provides significant examples of devices utilizing the HTS technology today. The book is useful for a broad spectrum of professionals worldwide: students, teaching staff, and OEM designers as well as users in industry and electric utilities." —Professor Dr. Rolf Hellinger, Research and Technologies Corporate Technology, Siemens AG




Fundamental Elements of Applied Superconductivity in Electrical Engineering


Book Description

Superconducting technology is potentially important as one of the future smart grid technologies. It is a combination of superconductor materials, electrical engineering, cryogenic insulation, cryogenics and cryostats. There has been no specific book fully describing this branch of science and technology in electrical engineering. However, this book includes these areas, and is essential for those majoring in applied superconductivity in electrical engineering. Recently, superconducting technology has made great progress. Many universities and companies are involved in applied superconductivity with the support of government. Over the next five years, departments of electrical engineering in universities and companies will become more involved in this area. This book: • will enable people to directly carry out research on applied superconductivity in electrical engineering • is more comprehensive and practical when compared to other advances • presents a clear introduction to the application of superconductor in electrical engineering and related fundamental technologies • arms readers with the technological aspects of superconductivity required to produce a machine • covers power supplying technologies in superconducting electric apparatus • is well organized and adaptable for students, lecturers, researchers and engineers • lecture slides suitable for lecturers available on the Wiley Companion Website Fundamental Elements of Applied Superconductivity in Electrical Engineering is ideal for academic researchers, graduates and undergraduate students in electrical engineering. It is also an excellent reference work for superconducting device researchers and engineers.




High-Temperature Superconducting Devices for Energy Applications


Book Description

This book presents novel concepts in the development of high-temperature superconducting (HTS) devices and discusses the technologies involved in producing efficient and economically feasible energy technologies around the world. High-Temperature Superconducting Devices for Energy Application covers the application of high-temperature superconductors in clean energy production and allied cooling technologies. In addition, it presents the compatibility of other materials involved in the construction of various devices at cryogenic temperatures. It also summarizes superconducting fault current limiters (SFCL) and related grid stabilization. The book addresses the need to lower the losses incurred with efficient power transmission. The aim of this book is to serve the needs of industry professionals, researchers, and doctoral students studying energy technologies. Features Discusses the history of the development of high-temperature superconductors Covers cryogenic cooling technologies adapted for various superconducting devices Presents a detailed design of superconducting generators Highlights the importance of superconducting magnetic energy storage (SMES) devices in the power grid Focuses on theoretical computations




Superconducting Fault Current Limiter: Innovation For The Electric Grids


Book Description

This book mainly deals with SuperConducting Fault Current Limiter (SCFCL), mainly the resistive SCFCLs. It aims to further disseminate the technical knowledge of SCFCL in particular to electrical engineers. The SCFCL is a new component and tool to better design and to be used in existing and future electric grids, altering the conventional way of thinking and planning.




Power Electronics in Renewable Energy Systems and Smart Grid


Book Description

The comprehensive and authoritative guide to power electronics in renewable energy systems Power electronics plays a significant role in modern industrial automation and high- efficiency energy systems. With contributions from an international group of noted experts, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers a comprehensive review of the technology and applications of power electronics in renewable energy systems and smart grids. The authors cover information on a variety of energy systems including wind, solar, ocean, and geothermal energy systems as well as fuel cell systems and bulk energy storage systems. They also examine smart grid elements, modeling, simulation, control, and AI applications. The book's twelve chapters offer an application-oriented and tutorial viewpoint and also contain technology status review. In addition, the book contains illustrative examples of applications and discussions of future perspectives. This important resource: Includes descriptions of power semiconductor devices, two level and multilevel converters, HVDC systems, FACTS, and more Offers discussions on various energy systems such as wind, solar, ocean, and geothermal energy systems, and also fuel cell systems and bulk energy storage systems Explores smart grid elements, modeling, simulation, control, and AI applications Contains state-of-the-art technologies and future perspectives Provides the expertise of international authorities in the field Written for graduate students, professors in power electronics, and industry engineers, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers an up-to-date guide to technology and applications of a wide-range of power electronics in energy systems and smart grids.




Introduction to Superconductivity


Book Description

Introduction to Superconductivity differs from the first edition chiefly in Chapter 11, which has been almost completely rewritten to give a more physically-based picture of the effects arising from the long-range coherence of the electron-waves in superconductors and the operation of quantum interference devices. In this revised second edition, some further modifications have been made to the text and an extra chapter dealing with ""high-temperature"" superconductors has been added. A vast amount of research has been carried out on these since their discovery in 1986 but the results, both theoretical and experimental, have often been contradictory, and seven years later there remains little understanding of their behavior. This book comprises 14 chapters, with the first focusing on zero resistance. Succeeding chapters then discuss perfect diamagnetism; electrodynamics; the critical magnetic field; thermodynamics of the transition; the intermediate state; and transport currents in superconductors. Other chapters cover the superconducting properties of small specimens; the microscopic theory of superconductivity; tunneling and the energy gap; coherence of the electron-pair wave; the mixed state; critical currents of type-II superconductors; and high-temperature superconductors. This book will be of interest to practitioners in the fields of superconductivity and solid-state physics.




Applications of Superconductivity


Book Description

This book, in essence the proceedings of a NATO Advanced Study Institute with the same title, is designed to provide in-depth coverage of many, but not all, of the major current applications of superconductivity, and of many that still are being developed. It will be of value to scientists and engineers who have interests in the research and production aspects of the technology, as well as in the applications themselves. The ftrst three chapters (by Clarke, Vrba and Wikswo) are devoted to an understanding of the principles, fabrication and uses of SQUID magnetometers and gradiometers, with the greatest emphasis on biomagnetism and nondestructive evaluation (NDE). For the most part, traditional low-temperature superconductor (LTS) SQUIDs are used, but particularly for NDE, high-temperature superconductor (HTS) SQUIDs are proving useful and often more convenient. The succeeding three chapters (by Przybysz, Likharev and Chaloupka) cover broader aspects of superconducting electronics. The ftrst two of these deal primarily with digital L TS circuits, while the third discusses in great detail passive component applications using HTS materials. Currently, HTS ftlters are undergoing intense J3-site testing at cellular telephone base stations. While it is clear that HTS ftlters outperform conventional ftlters in reducing signal loss and allowing for more channels in a given bandwidth, it isn't yet certain that the cellular telephone industry sees sufficient economic beneftts to make a ftrm decision to use HTS ftlters universally in its systems. If this application is generally adapted, the market for these ftlters should be quite large.




New Techniques for Future Accelerators III


Book Description

A fundamental step towards gaining a deeper understanding of our world is to increase the resolution of the investigative instruments we use; i.e. to increase the energy, and hence to decrease the wavelength, of the particles which constitute our probes. Almost any substantial progress in our understanding of the fundamental laws of Nature has been obtained when a new generation of accelerators has allowed us to achieve a new energy range. The new results have generated new questions, thus encouraging us to construct new machines to reach even higher energy levels. The relative energy gain from one generation of accelerators to the next is progressively increasing. The energy ga in suggested by the theoretical predictions at the time has usually been much greater than the value allowed by our technical capabilities. But this smaller energy gain permitted by accelerator technology improvement has generally been sufficient up until now to bring about a substantial increase in our knowledge. Hence a large increase in accelerator energy is very important, and we know that this result can essentially be obtained by developing some new device or some new approach.