Supercontinent Cycles Through Earth History


Book Description

The supercontinent-cycle hypothesis attributes planetary-scale episodic tectonic events to an intrinsic self-organizing mode of mantle convection, governed by the buoyancy of continental lithosphere that resists subduction during the closure of old ocean basins, and the consequent reorganization of mantle convection cells leading to the opening of new ocean basins. Characteristic timescales of the cycle are typically 500 to 700 million years. Proposed spatial patterns of cyclicity range from hemispheric (introversion) to antipodal (extroversion), to precisely between those end members (orthoversion). Advances in our understanding can arise from theoretical or numerical modelling, primary data acquisition relevant to continental reconstructions, and spatiotemporal correlations between plate kinematics, geodynamic events and palaeoenvironmental history. The palaeogeographic record of supercontinental tectonics on Earth is still under development. The contributions in this Special Publication provide snapshots in time of these investigations and indicate that Earth’s palaeogeographic record incorporates elements of all three end-member spatial patterns.




Ancient Supercontinents and the Paleogeography of Earth


Book Description

Ancient Supercontinents and the Paleogeography of Earth offers a systematic examination of Precambrian cratons and supercontinents. Through detailed maps of drift histories and paleogeography of each continent, this book examines topics related to Earth's tectonic evolution prior to Pangea, including plate kinematics, orogenic development, and paleoenvironments. Additionally, this book discusses the methodologies used, principally paleomagnetism and tectonostratigraphy, and addresses geophysical topics of mantle dynamics and geodynamo evolution over billions of years. Structured clearly with consistent coverage for Precambrian cratons, this book combines state-of-the-art paleomagnetic and geochronologic data to reconstruct the paleogeography of the Earth in the context of major climatic events such as global glaciations. It is an ideal, up-to-date reference for geoscientists and geographers looking for answers to questions surrounding the tectonic evolution of Earth. - Provides robust paleogeographies of Precambrian cratons based on high-quality paleomagnetic and geochronologic data and critically tested by global geological datasets - Includes links to updated databases for the Precambrian such as PALEOMAGIA and the Global Paleomagnetic Database (GPMDB) - Presents full-color maps of the drift histories of each continent as well as their paleogeographies - Discusses key questions regarding continental drift, the supercontinent cycle, and the geomagnetic dipole hypothesis and analyzes palaeography in the context of Earth's holistic evolution




Earth as an Evolving Planetary System


Book Description

Earth as an Evolving Planetary System, Second Edition, explores key topics and questions relating to the evolution of the Earth's crust and mantle over the last four billion years. This updated edition features exciting new information on Earth and planetary evolution and examines how all subsystems in our planet—crust, mantle, core, atmosphere, oceans and life—have worked together and changed over time. It synthesizes data from the fields of oceanography, geophysics, planetology, and geochemistry to address Earth's evolution. This volume consists of 10 chapters, including two new ones that deal with the Supercontinent Cycle and on Great Events in Earth history. There are also new and updated sections on Earth's thermal history, planetary volcanism, planetary crusts, the onset of plate tectonics, changing composition of the oceans and atmosphere, and paleoclimatic regimes. In addition, the book now includes new tomographic data tracking plume tails into the deep mantle. This book is intended for advanced undergraduate and graduate students in Earth, Atmospheric, and Planetary Sciences, with a basic knowledge of geology, biology, chemistry, and physics. It also may serve as a reference tool for structural geologists and professionals in related disciplines who want to look at the Earth in a broader perspective. - Kent Condie's corresponding interactive CD, Plate Tectonics and How the Earth Works, can be purchased from Tasa Graphic Arts here: http://www.tasagraphicarts.com/progptearth.html - Two new chapters on the Supercontinent Cycle and on Great Events in Earth history - New and updated sections on Earth's thermal history, planetary volcanism, planetary crusts, the onset of plate tectonics, changing composition of the oceans and atmosphere, and paleoclimatic regimes - Also new in this Second Edition: the lower mantle and the role of the post-perovskite transition, the role of water in the mantle, new tomographic data tracking plume tails into the deep mantle, Euxinia in Proterozoic oceans, The Hadean, A crustal age gap at 2.4-2.2 Ga, and continental growth




Fifty Years of the Wilson Cycle Concept in Plate Tectonics


Book Description

Fifty years ago, Tuzo Wilson published his paper asking `Did the Atlantic close and then re-open?’. This led to the `Wilson Cycle’ concept in which the repeated opening and closing of ocean basins along old orogenic belts is a key process in the assembly and breakup of supercontinents. The Wilson Cycle underlies much of what we know about the geological evolution of the Earth and its lithosphere, and will no doubt continue to be developed as we gain more understanding of the physical processes that control mantle convection, plate tectonics, and as more data become available from currently less accessible regions. This volume includes both thematic and review papers covering various aspects of the Wilson Cycle concept. Thematic sections include: (1) the Classic Wilson v. Supercontinent Cycles, (2) Mantle Dynamics in the Wilson Cycle, (3) Tectonic Inheritance in the Lithosphere, (4) Revisiting Tuzo’s question on the Atlantic, (5) Opening and Closing of Oceans, and (6) Cratonic Basins and their place in the Wilson Cycle.




Continents and Supercontinents


Book Description

Surveys the origin of continents, and the accretion and breakup of supercontinents through earth history. This book also shows how these processes affected the composition of seawater, climate, and the evolution of life.




Geodynamics of the Indian Plate


Book Description

This book provides insights on new geological, tectonic, and climatic developments in India through a time progression from the Archean to the Anthropocene that are captured via authoritative entries from experts in earth sciences. This volume aims to bring graduate students and researchers up to date on the geodynamic evolution of the Indian Plate; concepts that have so far resulted in a rather uneven treatment of the subject at different institutions. The book is divided into 4 sections and includes perspectives such as the formation and evolution of the Indian crust in comparison to its neighbors such as Antarctica, Africa and Australia; the evolution of Precambrian cratons and sedimentary basins of India; and a summary account of early life reported in the Indian stratigraphic record. Readers will also discover the key recent research into the neotectonics, tectonic geomorphology, and paleoseismology of the Himalayan Front. Researchers and students in geology, earth sciences, sedimentology, paleobiology and geography will find this book appealing.




Pannotia to Pangaea


Book Description

Special Publication 503 celebrates the career of R. Damian Nance. It features 27 articles, with more than 110 authors based in 18 different countries. These articles include contributions on the processes responsible for the formation and breakup of supercontinents, the controversies concerning the status of Pannotia as a supercontinent, the generation and destruction of Paleozoic oceans, and the development of the Appalachian-Ouachitan-Caledonide-Variscan orogens. In addition to field work, the approaches to gain that understanding include examining the relationships between stratigraphy and structural geology, precise geochronology, geochemical and isotopic fingerprinting, geodynamic modelling, regional syntheses, palaeogeographic modelling, and good old-fashioned arm-waving! The wide range of topics mirrors the breadth and depth of Damian’s contributions, interests and expertise. Like Damian’s papers, the contributions range from the predominantly conceptual to detailed field work, but all are targeted at understanding important tectonic processes. Their scope not only varies in scale from global to regional to local, but also in the range of approaches required to gain that understanding.




Supercontinent


Book Description

Explores the Supercontinent Cycle from the earliest recorded time to the geological discoveries of today including the drifting of the continents and the evolution of dinosaurs.




Antarctica and Supercontinent Evolution


Book Description

Antarctica preserves a rock record that spans three and a half billion years of history and has a remarkable story to tell about the evolution of our Earth, from the hottest crustal rocks yet found in an orogenic system, to the assembly and breakup of Gondwana in the Phanerozoic. This volume highlights our improved understanding of the tectonic events that have shaped Antarctica and how these potentially relate to supercontinent assembly and fragmentation. The internal constitution of the East Antarctic Shield is assessed using information available from the basement geology and from detritus preserved as Mesozoic sediments in the Trans Antarctic Mountains. Accretionary orogenesis along the proto-Pacific margin of Antarctica is examined and the volumes of intracrustal melting compared with juvenile magma additions in these complex orogenic systems assessed. This special volume demonstrates the diversity of approaches required to elucidate and understand crustal evolution and evaluate the supercontinent concept.




Palaeoproterozoic Supercontinents and Global Evolution


Book Description

The Palaeoproterozoic era (2500-1600 Ma) is a critical period of Earth history, with dynamic evolution from the deep planetary interior to its surface environment. Several lines of geological evidence suggest the existence of at least one pre-Rodinia supercontinent, named Nuna or Columbia, which formed near the end of Palaeoproterozoic time. Prior to this assembly, there may have been an older supercontinent (Kenorland) or perhaps only independently drifting supercratons. The tectonic records of amalgamation and dispersal of these ancient landmasses provide a framework that links processes of the deep Earth with those of its fluid envelope. The sixteen papers in this volume present reviews and new analytical data that span the geological record of Palaeoproterozoic Earth. The volume is useful as a reference book for students and professional geoscientists interested in this important period of global evolution.