Understanding the Enrichment of Heavy Elements by the Chemodynamical Evolution Models of Dwarf Galaxies


Book Description

This book addresses the mechanism of enrichment of heavy elements in galaxies, a long standing problem in astronomy. It mainly focuses on explaining the origin of heavy elements by performing state-of-the-art, high-resolution hydrodynamic simulations of dwarf galaxies. In this book, the author successfully develops a model of galactic chemodynamical evolution by means of which the neutron star mergers can be used to explain the observed abundance pattern of the heavy elements synthesized by the rapid neutron capture process, such as europium, gold, and uranium in the Local Group dwarf galaxies. The book argues that heavy elements are significant indicators of the evolutionary history of the early galaxies, and presents theoretical findings that open new avenues to understanding the formation and evolution of galaxies based on the abundance of heavy elements in metal-poor stars.




Connecting Quarks with the Cosmos


Book Description

Advances made by physicists in understanding matter, space, and time and by astronomers in understanding the universe as a whole have closely intertwined the question being asked about the universe at its two extremesâ€"the very large and the very small. This report identifies 11 key questions that have a good chance to be answered in the next decade. It urges that a new research strategy be created that brings to bear the techniques of both astronomy and sub-atomic physics in a cross-disciplinary way to address these questions. The report presents seven recommendations to facilitate the necessary research and development coordination. These recommendations identify key priorities for future scientific projects critical for realizing these scientific opportunities.




X-Ray Emission from Clusters of Galaxies


Book Description

First published in 1988, this book is a comprehensive survey of the astrophysical characteristics of the hot gas which pervades clusters of galaxies. In our universe, clusters of galaxies are the largest organised structures. Typically they comprise hundreds of galaxies moving through a region of space ten million light years in diameter. The volume between the galaxies is filled with gas having a temperature of 100 million degrees. This material is a strong source of cosmic X-rays. Dr Sarazin describes the theoretical description of the origin, dynamics, and physical state of the cluster gas. Observations by radio and optical telescopes are also summarised. This account is addressed to professional astronomers and to graduate students. It is an exhaustive summary of a rapidly expanding field of research in modern astrophysics.




Thermonuclear Supernovae


Book Description

All theoretical and observational topics relevant to the understanding of the thermonuclear (Type Ia) supernova phenomenon are thoroughly and consistently reviewed by a panel including the foremost experts in the field. The book covers all aspects, ranging from the observations of SNe Ia at all stages and all wavelengths to the 2D and 3D modelling of thermonuclear flames in very dense plasmas. Scenarios for close binary evolution leading to SNe Ia are discussed. Particular emphasis is placed on the homogeneity vs. diversity of SNe Ia and on their use as standard candles to measure cosmological parameters. The book reflects the recent and very significant progress made in both the modelling of the explosions and in the observational field.




Clusters of Galaxies: Physics and Cosmology


Book Description

Clusters of galaxies are large assemblies of galaxies, hot gas and dark matter bound together by gravity. Galaxy clusters are now one of the most important cosmological probes to test the standard cosmological models. Constraints on the Dark Energy equation of state from the cluster number density measurements, deviations from the Gaussian perturbation models, the Sunyaev-Zeldovich effect as well as the dark matter proles are among the issues to be studied with clusters. The baryonic composition of clusters is dominated by hot gas that is in quasi-hydrostatic equilibrium within the dark matter-dominated gravitational potential well of the cluster. The hot gas is visible through spatially extended thermal X-ray emission, and it has been studied extensively both for assessing its physical properties and as a tracer of the large-scale structure of the Universe. Magnetic fields as well as a number of non-thermal plasma processes play a role in clusters of galaxies as we observe from radioastronomical observations. The goal of this volume is to review these processes and to investigate how they are interlinked. Overall, these papers provide a timely and comprehensive review of the multi-wavelength observations and theoretical understanding of clusters of galaxies in the cosmological context. Thus, the volume will be particularly useful to postgraduate students and researchers active in various areas of astrophysics and space science. Originally published in Space Science Reviews in the Topical Collection "Clusters of Galaxies: Physics and Cosmology"




Galaxies at High Redshift


Book Description

This volume presents lectures of the XI Canary Islands Winter School of Astrophysics written by experts in the field.




Proceedings of the 7th International Symposium Particles, Strings and Cosmology


Book Description

The PASCOS (International Symposium on Particles, Strings and Cosmology) series brings together the leading experts and most active young researchers in the closely related fields of elementary particle physics, string theory and cosmology/astrophysics. These areas of research have become increasingly intertwined in recent years, each having direct impact on the others. In particular, there has been a dramatic expansion of ideas from particle theory and string theory that have vast impact on cosmology, especially our picture of the early universe and its evolution. Correspondingly, the proliferation of data regarding the early universe, and its increasing precision, has begun to strongly constrain the theoretical models. Meanwhile, observations of neutrino oscillations and cosmic ray excesses, and limits on new physics from colliders and other particle experiments, as well as the resulting restrictions on theoretical and phenomenological modeling, are becoming ever stronger. During PASCOS99, it became clear that the long-awaited era of convergence of these fields is truly at hand.The proceedings of PASCOS 99 reflect the accelerating overlap and convergence of the fields of elementary particles physics, string theory and cosmology/astrophysics. Plenary reviews by leading figures in these fields provide perspectives on these interrelationships and up-to-the-minute summaries of recent progress in the various areas. Parallel talk summaries focus on many of the topics within each field of greatest current interest and activity. Both the plenary and parallel writeups are designed to be descriptive in nature and avoid being overly technical. As a result, the volume can serve as a useful reference for students and professionals in all three fields. Careful referencing allows further pursuit of a given topic. Overall, the proceedings are unique in that they not only bring together in a single volume comprehensive overview of the great progress being made in all three of these very exciting fields, but also provide a snapshot of how particles, strings and cosmology are increasingly impacting one another.




Galactic Dynamics


Book Description

Since it was first published in 1987, Galactic Dynamics has become the most widely used advanced textbook on the structure and dynamics of galaxies and one of the most cited references in astrophysics. Now, in this extensively revised and updated edition, James Binney and Scott Tremaine describe the dramatic recent advances in this subject, making Galactic Dynamics the most authoritative introduction to galactic astrophysics available to advanced undergraduate students, graduate students, and researchers. Every part of the book has been thoroughly overhauled, and many sections have been completely rewritten. Many new topics are covered, including N-body simulation methods, black holes in stellar systems, linear stability and response theory, and galaxy formation in the cosmological context. Binney and Tremaine, two of the world's leading astrophysicists, use the tools of theoretical physics to describe how galaxies and other stellar systems work, succinctly and lucidly explaining theoretical principles and their applications to observational phenomena. They provide readers with an understanding of stellar dynamics at the level needed to reach the frontiers of the subject. This new edition of the classic text is the definitive introduction to the field. ? A complete revision and update of one of the most cited references in astrophysics Provides a comprehensive description of the dynamical structure and evolution of galaxies and other stellar systems Serves as both a graduate textbook and a resource for researchers Includes 20 color illustrations, 205 figures, and more than 200 problems Covers the gravitational N-body problem, hierarchical galaxy formation, galaxy mergers, dark matter, spiral structure, numerical simulations, orbits and chaos, equilibrium and stability of stellar systems, evolution of binary stars and star clusters, and much more Companion volume to Galactic Astronomy, the definitive book on the phenomenology of galaxies and star clusters







The Universe of Galaxies


Book Description

The Milky Way Galaxy, Andromeda Galaxy, Dark Mater in spiral Galazies, Cosmic Jets.