Superstrings, Geometry, Topology, and $C^*$-algebras


Book Description

This volume contains the proceedings of an NSF-CBMS Conference held at Texas Christian University in Fort Worth, Texas, May 18-22, 2009. The papers, written especially for this volume by well-known mathematicians and mathematical physicists, are an outgrowth of the talks presented at the conference. Topics examined are highly interdisciplinary and include, among many other things, recent results on D-brane charges in $K$-homology and twisted $K$-homology, Yang-Mills gauge theory and connections with non-commutative geometry, Landau-Ginzburg models, $C^*$-algebraic non-commutative geometry and ties to quantum physics and topology, the rational homotopy type of the group of unitary elements in an Azumaya algebra, and functoriality properties in the theory of $C^*$-crossed products and fixed point algebras for proper actions. An introduction, written by Jonathan Rosenberg, provides an instructive overview describing common themes and how the various papers in the volume are interrelated and fit together. The rich diversity of papers appearing in the volume demonstrates the current interplay between superstring theory, geometry/topology, and non-commutative geometry. The book will be of interest to graduate students, mathematicians, mathematical physicists, and researchers working in these areas.







Higher Structures in Topology, Geometry, and Physics


Book Description

This volume contains the proceedings of the AMS Special Session on Higher Structures in Topology, Geometry, and Physics, held virtually on March 26–27, 2022. The articles give a snapshot survey of the current topics surrounding the mathematical formulation of field theories. There is an intricate interplay between geometry, topology, and algebra which captures these theories. The hallmark are higher structures, which one can consider as the secondary algebraic or geometric background on which the theories are formulated. The higher structures considered in the volume are generalizations of operads, models for conformal field theories, string topology, open/closed field theories, BF/BV formalism, actions on Hochschild complexes and related complexes, and their geometric and topological aspects.




Algebraic Geometry: Salt Lake City 2015


Book Description

This is Part 1 of a two-volume set. Since Oscar Zariski organized a meeting in 1954, there has been a major algebraic geometry meeting every decade: Woods Hole (1964), Arcata (1974), Bowdoin (1985), Santa Cruz (1995), and Seattle (2005). The American Mathematical Society has supported these summer institutes for over 50 years. Their proceedings volumes have been extremely influential, summarizing the state of algebraic geometry at the time and pointing to future developments. The most recent Summer Institute in Algebraic Geometry was held July 2015 at the University of Utah in Salt Lake City, sponsored by the AMS with the collaboration of the Clay Mathematics Institute. This volume includes surveys growing out of plenary lectures and seminar talks during the meeting. Some present a broad overview of their topics, while others develop a distinctive perspective on an emerging topic. Topics span both complex algebraic geometry and arithmetic questions, specifically, analytic techniques, enumerative geometry, moduli theory, derived categories, birational geometry, tropical geometry, Diophantine questions, geometric representation theory, characteristic and -adic tools, etc. The resulting articles will be important references in these areas for years to come.




Lie Algebras, Lie Superalgebras, Vertex Algebras and Related Topics


Book Description

This book contains the proceedings of the 2012–2014 Southeastern Lie Theory Workshop Series held at North Carolina State University in April 2012, at College of Charleston in December 2012, at Louisiana State University in May 2013, and at University of Georgia in May 2014. Some of the articles by experts in the field survey recent developments while others include new results in representations of Lie algebras, and quantum groups, vertex (operator) algebras and Lie superalgebras.




The Geometry of the Octonions


Book Description

There are precisely two further generalizations of the real and complex numbers, namely, the quaternions and the octonions. The quaternions naturally describe rotations in three dimensions. In fact, all (continuous) symmetry groups are based on one of these four number systems. This book provides an elementary introduction to the properties of the octonions, with emphasis on their geometric structure. Elementary applications covered include the rotation groups and their spacetime generalization, the Lorentz group, as well as the eigenvalue problem for Hermitian matrices. In addition, more sophisticated applications include the exceptional Lie groups, octonionic projective spaces, and applications to particle physics including the remarkable fact that classical supersymmetry only exists in particular spacetime dimensions.Contents: Introduction"Number Systems: "The Geometry of the Complex NumbersThe Geometry of the QuaternionsThe Geometry of the OctonionsOther Number Systems"Symmetry Groups: "Some Orthogonal GroupsSome Unitary GroupsSome Symplectic GroupsSymmetry Groups over Other Division AlgebrasLie Groups and Lie AlgebrasThe Exceptional Groups"Applications: "Division Algebras in MathematicsOctonionic Eigenvalue ProblemsThe Physics of the OctonionsMagic Squares Readership: Advanced ubdergraduate and graduate students and faculty in mathematics and physics; non-experts with moderately sophisticated mathematics background. Key Features: This book is easily digestible by a large audience wanting to know the elementary introduction to octanionsSuitable for any reader with a grasp of the complex numbers, although familiarity with non-octonionic versions of some of the other topics would be helpfulMany open problems are very accessibleAdvanced topics covered are quite sophisticated, leading up to a clear discussion of (one representation of) the exceptional Lie algebras and their associated root diagrams, and of the octonionic projective spaces on which they act




Operator Algebras and Their Applications


Book Description

his volume contains the proceedings of the AMS Special Session Operator Algebras and Their Applications: A Tribute to Richard V. Kadison, held from January 10–11, 2015, in San Antonio, Texas. Richard V. Kadison has been a towering figure in the study of operator algebras for more than 65 years. His research and leadership in the field have been fundamental in the development of the subject, and his influence continues to be felt though his work and the work of his many students, collaborators, and mentees. Among the topics addressed in this volume are the Kadison-Kaplanksy conjecture, classification of C∗-algebras, connections between operator spaces and parabolic induction, spectral flow, C∗-algebra actions, von Neumann algebras, and applications to mathematical physics.




Low-dimensional and Symplectic Topology


Book Description

Every eight years since 1961, the University of Georgia has hosted a major international topology conference aimed at disseminating important recent results and bringing together researchers at different stages of their careers. This volume contains the proceedings of the 2009 conference, which includes survey and research articles concerning such areas as knot theory, contact and symplectic topology, 3-manifold theory, geometric group theory, and equivariant topology. Among other highlights of the volume, a survey article by Stefan Friedl and Stefano Vidussi provides an accessible treatment of their important proof of Taubes' conjecture on symplectic structures on the product of a 3-manifold and a circle, and an intriguing short article by Dennis Sullivan opens the door to the use of modern algebraic-topological techniques in the study of finite-dimensional models of famously difficult problems in fluid dynamics. Continuing what has become a tradition, this volume contains a report on a problem session held at the conference, discussing a variety of open problems in geometric topology.







String-Math 2011


Book Description

The nature of interactions between mathematicians and physicists has been thoroughly transformed in recent years. String theory and quantum field theory have contributed a series of profound ideas that gave rise to entirely new mathematical fields and revitalized older ones. The influence flows in both directions, with mathematical techniques and ideas contributing crucially to major advances in string theory. A large and rapidly growing number of both mathematicians and physicists are working at the string-theoretic interface between the two academic fields. The String-Math conference series aims to bring together leading mathematicians and mathematically minded physicists working in this interface. This volume contains the proceedings of the inaugural conference in this series, String-Math 2011, which was held June 6-11, 2011, at the University of Pennsylvania.