Supersymmetry After the Higgs Discovery


Book Description

Supersymmetry (SUSY) is a new symmetry that relates bosons and fermions, which has strong support at both the mathematical and the physical level. This book offers a comprehensive review, following the development of SUSY from its very early days up to present. The order of the contributions should provide the reader with the historical development as well as the latest theoretical updates and interpretations, and experimental constraints from particle accelerators and dark matter searches. It is a great pleasure to bring together here contributions from authors who initiated or have contributed significantly to the development of this theory over so many years. To present a balanced point of view, the book also includes a closing contribution that attempts to describe the physics beyond the Standard Model in the absence of SUSY. The contributions to this book have been previously published in The European Physical Journal C - Particles and Fields.




Higgs, Supersymmetry and Dark Matter After Run I of the LHC


Book Description

This work was nominated as an outstanding PhD thesis by the LPSC, Université Grenoble Alpes, France. The LHC Run 1 was a milestone in particle physics, leading to the discovery of the Higgs boson, the last missing piece of the so-called "Standard Model" (SM), and to important constraints on new physics, which challenge popular theories like weak-scale supersymmetry. This thesis provides a detailed account of the legacy of the LHC Run 1 ≤¥regarding these aspects. First, the SM and the need for its extension are presented in a concise yet revealing way. Subsequently, the impact of the LHC Higgs results on scenarios of new physics is assessed in detail, including a careful discussion of the relevant uncertainties. Two approaches are considered: generic modifications of the Higgs couplings, possibly arising from extended Higgs sectors or higher-dimensional operators; and tests of specific new physics models. Lastly, the implications of the null results of the searches for new physics are discussed with a particular focus on supersymmetric dark matter candidates. Here as well, two approaches are presented: the "simplified models" approach, and recasting by event simulation. This thesis stands out for its educational approach, its clear language and the depth of the physics discussion. The methods and tools presented offer readers essential practical tools for future research.




Beyond Standard Model Collider Phenomenology of Higgs Physics and Supersymmetry


Book Description

This thesis studies collider phenomenology of physics beyond the Standard Model at the Large Hadron Collider (LHC). It also explores in detail advanced topics related to Higgs boson and supersymmetry – one of the most exciting and well-motivated streams in particle physics. In particular, it finds a very large enhancement of multiple Higgs boson production in vector-boson scattering when Higgs couplings to gauge bosons differ from those predicted by the Standard Model. The thesis demonstrates that due to the loss of unitarity, the very large enhancement for triple Higgs boson production takes place. This is a truly novel finding. The thesis also studies the effects of supersymmetric partners of top and bottom quarks on the Higgs production and decay at the LHC, pointing for the first time to non-universal alterations for two main production processes of the Higgs boson at the LHC–vector boson fusion and gluon–gluon fusion. Continuing the exploration of Higgs boson and supersymmetry at the LHC, the thesis extends existing experimental analysis and shows that for a single decay channel the mass of the top quark superpartner below 175 GeV can be completely excluded, which in turn excludes electroweak baryogenesis in the Minimal Supersymmetric Model. This is a major new finding for the HEP community. This thesis is very clearly written and the introduction and conclusions are accessible to a wide spectrum of readers.




Supersymmetry Beyond Minimality


Book Description

Supersymmetry (SUSY) is one of the most important ideas ever conceived in particle physics. It is a symmetry that relates known elementary particles of a certain spin to as yet undiscovered particles that differ by half a unit of that spin (known as Superparticles). Supersymmetric models now stand as the most promising candidates for a unified theory beyond the Standard Model (SM). SUSY is an elegant and simple theory, but its existence lacks direct proof. Instead of dismissing supersymmetry altogether, Supersymmetry Beyond Minimality: from Theory to Experiment suggests that SUSY may exist in more complex and subtle manifestation than the minimal model. The book explores in detail non-minimal SUSY models, in a bottom-up approach that interconnects experimental phenomena in the fermionic and bosonic sectors. The book considers with equal emphasis the Higgs and Superparticle sectors, and explains both collider and non-collider experiments. Uniquely, the book explores charge/parity and lepton flavour violation. Supersymmetry Beyond Minimality: from Theory to Experiment provides an introduction to well-motivated examples of such non-minimal SUSY models, including the ingredients for generating neutrino masses and/or relaxing the tension with the heavily constraining Large Hadron Collider (LHC) data. Examples of these scenarios are explored in depth, in particular the discussions on Next-to-Minimal Supersymmetric SM (NMSSM) and B-L Supersymmetric SM (BLSSM).




Supersymmetry and Beyond


Book Description

Revision of: Supersymmetry. Cambridge, Mass.: Perseus Pub., 2000.




Supersymmetry and the Unification of Fundamental Interactions


Book Description

This annual SUSY conference has become the world's largest international meeting devolted to new ideas in high energy physics. The main subject of the conference is theoretical and phenomenological aspects of supersymmetric theories, and dark matter and dark energy, and other comological connections. New, interesting results from various experimental groups are increasingly presented at the conference as well. With roughly 200 plenary and parallel presentations, SUSY08 will likely deliver energy and enthusiasm of both theorists and experimentalists who are searching the frontier of high energy physics.




The God Particle


Book Description

A fascinating tour of particle physics from Nobel Prize winner Leon Lederman. At the root of particle physics is an invincible sense of curiosity. Leon Lederman embraces this spirit of inquiry as he moves from the Greeks' earliest scientific observations to Einstein and beyond to chart this unique arm of scientific study. His survey concludes with the Higgs boson, nicknamed the God Particle, which scientists hypothesize will help unlock the last secrets of the subatomic universe, quarks and all--it's the dogged pursuit of this almost mystical entity that inspires Lederman's witty and accessible history.




The Particle at the End of the Universe


Book Description

"The Higgs boson ... is the key to understanding why mass exists and how atoms are possible. After billions of dollars and decades of effort by more than six thousand researchers at the Large Hadron Collider in Switzerland--a doorway is opening into the mind-boggling world of dark matter and beyond. Caltech physicist and acclaimed writer Sean Carroll explains both the importance of the Higgs boson and the ultimately human story behind the greatest scientific achievement of our time"--Publisher




Supersymmetry: Structure and Phenomena


Book Description

The book is a fairly non-technical introduction to modern supersymmetry phenomenology, approaching the subject in new and unique ways. It is suitable both for theorists and experimentalists, and emphasizes an intuitive grasp of the subject. Theoretical and experimental motivations, and the status and prospects of low-energy supersymmetry are discussed. It is shown by explicit construction that the stabilization of any perturbative theory which contains fundamental scalar bosons naturally leads to the notion of supersymmetry. The minimal supersymmetric extension of the standard model is then pedagogically defined and its experimental status is summarized. Renormalization of the models, including unificaiton, is discussed and the linkage between high and low energies is demonstrated, providing a potential probe of Planck-scale physics, such as unified theories. Besides a host of other phenomena, Higgs physics is discussed and the Higgs mass is shown to provide a crucial test of nearly all supersymmetric theories.