Fluid Mechanics Aspects of Fire and Smoke Dynamics in Enclosures


Book Description

This book provides essential understanding of flows in fire and smoke dynamics in enclosures, covering combustion, heat transfer and fire suppression in more detail than other introductory books. It moves from the basic equations for turbulent flows with combustion, through a discussion of the structure of flames, to fire and smoke plumes and their interaction with enclosure boundaries. This is then applied to fire dynamics and smoke and heat control in enclosures. This new edition provides considerably more on the fluid mechanics of the effect of water, and on fire dynamics modelling using Computational Fluid Dynamics. Presents worked examples taken from practical, everyday fire-related problems Covers a broad range of topics, from the basics to state-of-the-art computer simulations of fire and smoke-related fluid mechanics, including the effect of water Provides extensive treatment of the interaction of water sprays with a fire-driven flow Contains a chapter on Computational Fluid Dynamics, the increasingly popular calculation method in the field of fire safety science The book serves as a comprehensive guide at the undergraduate and starting researcher level on fire and smoke dynamics in enclosures, with an emphasis on fluid mechanics.













Unsteady Combustor Physics


Book Description

Developing clean, sustainable energy systems is a pre-eminent issue of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage. Unsteady combustor issues present the key challenge associated with the development of clean, high-efficiency combustion systems such as those used for power generation, heating or propulsion applications. This comprehensive study is unique, treating the subject in a systematic manner. Although this book focuses on unsteady combusting flows, it places particular emphasis on the system dynamics that occur at the intersection of the combustion, fluid mechanics and acoustic disciplines. Individuals with a background in fluid mechanics and combustion will find this book to be an incomparable study that synthesises these fields into a coherent understanding of the intrinsically unsteady processes in combustors.










The Dynamics of Extinction and Re-ignition Processes on a Diffusion Flame Sheet


Book Description

This research is concerned with a theoretical and computational study of the dynamics of ignition and extinction fronts on a laminar diffusion flame sheet. In the light of the S-curve, within the extinction and ignition Damkohler number limits, ignition and extinction of a diffusion flame may be regarded as dynamical transition processes between the extinguished branch and the ignited branch, with the edge flame as a characteristic transition structure. This research is devoted to the study of the temporal dynamics of curved edge flames.