Developments in Engineering Geology


Book Description

Developments in Engineering Geology is a showcase of the diversity in the science and practice of engineering geology. All branches of geology are applicable to solving engineering problems and this presents a wide frontier of scientific opportunity to engineering geology. In practice, diversity represents a different set of challenges with the distinctive character of the profession derived from the crossover between the disciplines of geology and engineering. This book emphasizes the importance of understanding the geological science behind the engineering behaviour of a soil or rock. It also highlights a continuing expansion in the practice areas of engineering geology and illustrates how this is opening new frontiers to the profession thereby introducing new knowledge and technology across a range of applications. This is initiating an evolution in the way geology is modelled in engineering, geohazard and environmental studies in modern and traditional areas of engineering geology.




Engineering Geology and Geomorphology of Glaciated and Periglaciated Terrains


Book Description

The Engineering Group of the Geological Society Working Party brought together experts in glacial and periglacial geomorphology, Quaternary history, engineering geology and geotechnical engineering to establish best practice when working in former glaciated and periglaciated environments. The Working Party addressed outdated terminology and reviewed the latest academic research to provide an up-to-date understanding of glaciated and periglaciated terrains. This transformative, state-of-the-art volume is the outcome of five years of deliberation and synthesis by the Working Party. This is an essential reference text for practitioners, students and academics working in these challenging ground conditions. The narrative style, and a comprehensive glossary and photo-catalogue of active and relict sediments, structures and landforms make this material relevant and accessible to a wide readership.




Geomodels in Engineering Geology


Book Description

The book provides a valuable guide to the evaluation and understanding of ground and environmental conditions of sites and their surrounds. This is done through a series of annotated block models and supporting photographs of common geological and geomorphological situations around the world, with basic text explanations and information on each principal block diagram and its annotated photographs. Ground conditions depend on the climatic, geological and geomorphological history of the site and its surrounding area. In ground investigation, ground engineering, design and construction, a preliminary study of the local environment (including climate), the landforms and the geomorphological processes creating and modifying the local landscape is thus required, as well as informed detailed knowledge of the soils and geology, their distribution, properties and engineering behaviour. Geomodels in Engineering Geology outlines the world's climatic and morphological zones and the changes such environments bring upon the ground. It deals with fundamental aspects of surface soils and geology in relation to their engineering behaviour and guides the way that ground investigation can be developed to provide appropriate information needed for design and construction of a project augmented by case histories and experience of practical problems.




Principles of Engineering Geology


Book Description

'Engineering geology' is one of those terms that invite definition. The American Geological Institute, for example, has expanded the term to mean 'the application of the geological sciences to engineering practice for the purpose of assuring that the geological factors affecting the location, design, construction, operation and mainten ance of engineering works are recognized and adequately provided for'. It has also been defined by W. R. Judd in the McGraw-Hill Encyclopaedia of Science and Technology as 'the application of education and experience in geology and other geosciences to solve geological problems posed by civil engineering structures'. Judd goes on to specify those branches of the geological or geo-sciences as surface (or surficial) geology, structural/fabric geology, geohydro logy, geophysics, soil and rock mechanics. Soil mechanics is firmly included as a geological science in spite of the perhaps rather unfortunate trends over the years (now happily being reversed) towards purely mechanistic analyses which may well provide acceptable solutions for only the simplest geology. Many subjects evolve through their subject areas from an interdisciplinary background and it is just such instances that pose the greatest difficulties of definition. Since the form of educational development experienced by the practitioners of the subject ulti mately bears quite strongly upon the corporate concept of the term 'engineering geology', it is useful briefly to consider that educational background.




Engineering Geology and Geotechnics


Book Description

Engineering Geology and Geotechnics discusses engineering survey methods. The book is comprised of 12 chapters that cover several concerns in engineering, such as building foundations, slopes, and construction materials. Chapter 1 covers site investigation, while Chapter 2 tackles geophysical exploration. Chapter 3 deals with slope and open excavation, while Chapter 4 discusses subsurface excavation. Foundation for buildings, reservoir, and dams and dam sites are also covered in the book. A chapter then tackles hydrogeology and underground water supply. The text also encompasses river and beach engineering. The last two chapters cover engineering seismology and construction materials. This book will be of great use to researchers, practitioners, and students of engineering.




Engineering Geology


Book Description

Engineering Geology attempts to provide an understanding of relations between the geology of a building site and the engineering structure. It presents examples taken from real-life experience and practice to provide evidence for the significance of engineering geology in planning, design, construction, and maintenance of engineering structures. The book begins with an introduction of geological investigations, distinguishing between the reconnaissance investigation, the detailed investigation, and investigation during construction. It then explains the significance of geological maps and sections; the mechanical behavior of rocks; subsurface investigation for engineering construction; and geophysical methods. The remaining chapters discuss the physical and chemical weathering of rocks; slope movements; and geological investigations for buildings, roads and railways, tunnels, and hydraulic structures. This book is intended particularly for civil engineering students and students of engineering geology in the university faculties of natural sciences. It describes geological features so as to be comprehensible to Technical College students and to explain construction problems intelligibly for geology students. The book will also be of assistance to planners, civil engineers, and graduate engineering geologists.




Practical Engineering Geology


Book Description

Steve Hencher presents a broad and fresh view on the importance of engineering geology to civil engineering projects. Practical Engineering Geology provides an introduction to the way that projects are managed, designed and constructed and the ways that the engineering geologist can contribute to cost-effective and safe project achievement. The nee




A Geology for Engineers


Book Description

No engineering structure can be built on the ground or within it without the influence of geology being experienced by the engineer. Yet geology is an ancillary subject to students of engineering and it is therefore essential that their training is supported by a concise, reliable and usable text on geology and its relationship to engineering. In this book all the fundamental aspects of geology are described and explained, but within the limits thought suitable for engineers. It describes the structure of the earth and the operation of its internal processes, together with the geological processes that shape the earth and produce its rocks and soils. It also details the commonly occurring types of rock and soil, and many types of geological structure and geological maps. Care has been taken to focus on the relationship between geology and geomechanics, so emphasis has been placed on the geological processes that bear directly upon the composition, structure and mechanics of soil and rocks, and on the movement of groundwater. The descriptions of geological processes and their products are used as the basis for explaining why it is important to investigate the ground, and to show how the investigations may be conducted at ground level and underground. Specific instruction is provided on the relationship between geology and many common activities undertaken when engineering in rock and soil.




Engineering Geology for Underground Rocks


Book Description

Professionals and students in any geology-related field will find this an essential reference. It clearly and systematically explains underground engineering geology principles, methods, theories and case studies. The authors lay out engineering problems in underground rock engineering and how to study and solve them. The book specially emphasizes mechanical and hydraulic couplings in rock engineering for wellbore stability, mining near aquifers and other underground structures where inflow is a problem.




Foundations of Engineering Geology


Book Description

Now in full colour, the third edition of this well established book provides a readable and highly illustrated overview of the aspects of geology that are most significant to civil engineers. Sections in the book include those devoted to the main rock types, weathering, ground investigation, rock mass strength, failures of old mines, subsidence on peats and clays, sinkholes on limestone and chalk, water in landslides, slope stabilization and understanding ground conditions. The roles of both natural and man-induced processes are assessed, and this understanding is developed into an appreciation of the geological environments potentially hazardous to civil engineering and construction projects. For each style of difficult ground, available techniques of site investigation and remediation are reviewed and evaluated. Each topic is presented as a double page spread with a careful mix of text and diagrams, with tabulated reference material on parameters such as bearing strength of soils and rocks. This new edition has been comprehensively updated and covers the entire spectrum of topics of interest for both students and practitioners in the field of civil engineering.