Surface Plasmon Resonance Based Sensors


Book Description

This is a comprehensive treatment of the field of SPR sensors, in three parts. Part I introduces principles of surface plasmon resonance bio-sensors, electromagnetic theory of surface plasmons, theory of SPR sensors and molecular interactions at sensor surfaces. Part II examines the development of SPR sensor instrumentation and functionalization methods. Part III reviews applications of SPR biosensors in the study of molecules, and in environmental monitoring, food safety and medical diagnostics.




2D Materials for Surface Plasmon Resonance-based Sensors


Book Description

2D Materials for Surface Plasmon Resonance-based Sensors offers comprehensive coverage of recent design and development (including processing and fabrication) of 2D materials in the context of plasmonic-based devices. It provides a thorough overview of the basic principles and techniques used in the analysis and design of 2D material-based optical sensor systems. Beginning with the basic concepts of plasmon/plasmonic sensors and mathematical modelling, the authors explain the fundamental properties of 2D materials, including Black Phosphorus (BP), Phosphorene, Graphene, Transition metal dichalcogenides (TMDCs), MXene's and SW-CNT. It also details the applications of these emerging materials in clinical diagnosis and their future trends. This text will be useful for practising engineers, undergraduate and postgraduate students. Key Features Presents the fundamental concepts of 2D material assisted fibre optic and prism based SPR sensor in a student-friendly manner. Includes the recent synthesis and characterization techniques of 2D materials. Provides computational results of recently discovered electronic and optical properties of the 2D materials along with their effectiveness in the field of plasmonic sensors. Presents emerging applications of novel 2D material-based plasmonic sensors in the field of chemical, bio-chemical and biosensing.




Handbook of Surface Plasmon Resonance


Book Description

Surface plasmon resonance (SPR) plays a dominant role in real-time interaction sensing of biomolecular binding events, this book provides a total system description including optics, fluidics and sensor surfaces for a wide researcher audience.




Localized Surface Plasmon Resonance Based Nanobiosensors


Book Description

This book introduces the fundamentals and applications of the localized surface plasmon resonance (LSPR) property of noble metallic nanoparticles, with an emphasis on the biosensing applications of plasmonic nanoparticles, especially in living cell imaging and photothermal therapy. It provides an overview of the different operating principles of plasmonic sensors, particularly the single-nanoparticle-based detections, and a series of creative biosensors based on the modulation of different parameters of nanoparticles (particle size, shape, composition and surrounding medium) for label-free detection. The interparticle coupling effect, plasmon resonance energy transfer, electron transfer on plasmonics surface are also covered in this book. This book is intended for graduate students and researchers working in the interdisciplinary field combining chemistry, biology, material science and nanophotonics. Yi-Tao Long is a Professor at the School of Chemistry and Molecular Engineering, East China University of Science and Technology, China.




Surface Plasmon Resonance Sensors


Book Description

This book addresses the important physical phenomenon of Surface Plasmon Resonance or Surface Plasmon Polaritons in thin metal films, a phenomenon which is exploited in the design of a large variety of physico-chemical optical sensors. In this treatment, crucial materials aspects for design and optimization of SPR sensors are investigated and outlined in detail. The text covers the selection of nanometer thin metal films, ranging from free-electron to the platinum type conductors, along with their combination with a large variety of dielectric substrate materials, and associated individual layer and opto-geometric arrangements. Furthermore, as-yet hardly explored SPR features of selected metal–metal and metal–dielectric super lattices are included in this report. An in-depth multilayer Fresnel evaluation provides the mathematical tool for this optical analysis, which otherwise relies solely on experimentally determined electro-optical materials parameters.




Fiber Optic Sensors Based On Plasmonics


Book Description

The book provides an introduction of surface plasmons and presents its applications in the sensing of various chemical and biological analyses using optical fiber technology. The field is developed by introducing the surface plasmons for semi-infinite metal-dielectric interface with discussion of their propagation length and penetration depth. Practical issues with the excitation of surface plasmons in different configurations and in various geometries including various means of their excitation have also been included. The book discusses the essential components of fiber optic sensors, their functions and the performance parameters along with the theoretical description of fiber optic Surface Plasmon Resonance (SPR) sensors with respect to various light launching conditions. The fabrication methods and protocols used for the fabrication of the fiber optic SPR chemical and biosensors have been described. Some fiber optic sensing applications based on SPR phenomena and various issues, such as sensitivity enhancement, influence of external stimuli etc, have been an important part of the book.The book will help beginners as well as established researchers in understanding the fundamentals and advancements of optical fiber plasmonic sensor technology. The book contains both the rigorous theory and the experimental techniques of SPR and related variety of sensors.




Surface Plasmons on Smooth and Rough Surfaces and on Gratings


Book Description

The book reviews the properties of surface plasmons that depict electromagnetic surface waves or surface plasma polaritons. Their propagation on smooth and corrugated surfaces (with rough or grating profiles) is considered. In the latter case, the corrugations can cause strong coupling of the surface plasmons with photons leading to resonances with a strong enhancement of the electromagnetic field in the surface. Coupling and field enhancement are the most prominent phenomena on corrugated surfaces and lead to numerous important applications. Attention has been focused on the explanation of the physics. To keep the text readable, sophisticated calculations have been avoided, and instead various applications dealing with enhanced light emission, nonlinear optics, SERS, and other cases of interest are discussed.




Immunosensors


Book Description

Immunosensors are widely used and are particularly important for fast diagnosis of diseases in remote environments as well as point-of-care devices. In this book, expert scientists are covering a selection of high quality representative examples from the past five years explaining how this area has developed. It is a compilation of recent advances in several areas of immunosensors for multiple target analysis using laboratory based or point-of-care set-up, for example graphene-, ISFET- and nanostructure-based immunosensors, electrochemical magneto immunosensors and nanoimprinted immunosensors. Filling a gap in the literature, it showcases the multidisciplinary, innovative developments in this highly important area and provides pointers towards commercialisation. Delivering a single, comprehensive work, it appeals to graduate students and professional researchers across academia and industry.




Fiber Optic Sensors


Book Description

The book is an introduction to the rapidly emerging field of fiber optic sensors that is having significant impact upon areas such as guidance and control, structural monitoring, process control, biotechnology, geographical information systems and medicine.




Biosensors


Book Description

This book covers novel and current strategies for biosensing, from the use of nanomaterials and biological functionalized surfaces to the mathematical assessment of novel biosensors and their potential use as wearable devices for continuous monitoring. Biosensing technologies can be used in the medical field for the early detection of disease, monitoring effectiveness of treatments, detecting nervous system signals for controlling robotic prosthesis, and much more. This book includes eleven chapters that examine and discuss several strategies of biosensing, proposing mathematical designs that address the latest reported technologies.