The Solar System Beyond Neptune


Book Description

A new frontier in our solar system opened with the discovery of the Kuiper Belt and the extensive population of icy bodies orbiting beyond Neptune. Today the study of all of these bodies, collectively referred to as trans-Neptunian objects, reveals them to be frozen time capsules from the earliest epochs of solar system formation. This new volume in the Space Science Series, with one hundred contributing authors, offers the most detailed and up-to-date picture of our solar systemÕs farthest frontier. Our understanding of trans-Neptunian objects is rapidly evolving and currently constitutes one of the most active research fields in planetary sciences. The Solar System Beyond Neptune brings the reader to the forefront of our current understanding and points the way to further advancement in the field, making it an indispensable resource for researchers and students in planetary science.




The Trans-Neptunian Solar System


Book Description

The Trans-Neptunian Solar System is a timely reference highlighting the state-of-the-art in current knowledge on the outer solar system. It not only explores the individual objects being discovered there, but also their relationships with other Solar System objects and their roles in the formation and evolution of the Solar System and other planets. Integrating important findings from recent missions, such as New Horizons and Rosetta, the book covers the physical properties of the bodies in the Trans-Neptunian Region, including Pluto and other large members of the Kuiper Belt, as well as dynamical indicators for Planet 9 and related objects and future prospects. Offering a complete look at exploration and findings in the Kuiper Belt and the rest of the outer solar system beyond Neptune, this book is an important resource to bring planetary scientists, space scientists and astrophysicists up-to-date on the latest research and current understandings. - Provides the most up-to-date information on the exploration of the Trans-Neptunian Solar System and what it means for the future of outer solar system research - Contains clear sections that provide comprehensive coverage on the most important facets of the outer Solar System - Includes four-color images and data from important missions, including New Horizons and Rosetta - Concludes with suggestions and insights on the future of research on Trans-Neptunian objects




Polarimetry of Stars and Planetary Systems


Book Description

Summarising the striking advances of the last two decades, this reliable introduction to modern astronomical polarimetry provides a comprehensive review of state-of-the-art techniques, models and research methods. Focusing on optical and near-infrared wavelengths, each detailed, up-to-date chapter addresses a different facet of recent innovations, including new instrumentation, techniques and theories; new methods based on laboratory studies, enabling the modelling of polarimetric characteristics for a wide variety of astronomical objects; emerging fields of polarimetric exploration, including proto-planetary and debris discs, icy satellites, transneptunian objects, exoplanets, and the search for extraterrestrial life; and unique results produced by space telescopes, and polarimeters aboard exploratory spacecraft. With contributions from an international team of accomplished researchers, this is an ideal resource for astronomers and researchers working in astrophysics, earth sciences, and remote sensing keen to learn more about this valuable diagnostic tool. The book is dedicated to the memory of renowned polarimetrist Tom Gehrels.




The Science of Solar System Ices


Book Description

The role of laboratory research and simulations in advancing our understanding of solar system ices (including satellites, KBOs, comets, and giant planets) is becoming increasingly important. Understanding ice surface radiation processing, particle and radiation penetration depths, surface and subsurface chemistry, morphology, phases, density, conductivity, etc., are only a few examples of the inventory of issues that are being addressed by Earth-based laboratory research. As a response to the growing need for cross-disciplinary dialog and communication in the Planetary Ices science community, this book aims to achieve direct dialog and foster focused collaborations among the observational, modeling, and laboratory research communities.




Light Scattering Reviews 5


Book Description

Light scattering by densely packed inhomogeneous media is a particularly ch- lenging optics problem. In most cases, only approximate methods are used for the calculations. However, in the case where only a small number of macroscopic sc- tering particles are in contact (clusters or aggregates) it is possible to obtain exact results solving Maxwell’s equations. Simulations are possible, however, only for a relativelysmallnumberofparticles,especiallyiftheirsizesarelargerthanthewa- length of incident light. The ?rst review chapter in PartI of this volume, prepared by Yasuhiko Okada, presents modern numerical techniques used for the simulation of optical characteristics of densely packed groups of spherical particles. In this case, Mie theory cannot provide accurate results because particles are located in the near ?eld of each other and strongly interact. As a matter of fact, Maxwell’s equations must be solved not for each particle separately but for the ensemble as a whole in this case. The author describes techniques for the generation of shapes of aggregates. The orientation averaging is performed by a numerical integration with respect to Euler angles. The numerical aspects of various techniques such as the T-matrix method, discrete dipole approximation, the ?nite di?erence time domain method, e?ective medium theory, and generalized multi-particle Mie so- tion are presented. Recent advances in numerical techniques such as the grouping and adding method and also numerical orientation averaging using a Monte Carlo method are discussed in great depth.




Comets II


Book Description

The study of comets is a field that has seen tremendous advances in recent years, far surpassing the knowledge reflected in the original Comets volume published as part of the Space Science Series in 1982. This new volume, with more than seventy contributing authors, represents the first complete overview of comet science in more than a decade and contains the most extensive collection of knowledge yet assembled in the field. Comets II situates comet science in the global context of astrophysics for the first time by beginning with a series of chapters that describe the connection between stars and planets. It continues with a presentation of the formation and evolution of planetary systems, enabling the reader to clearly see the key role played in our own solar system by the icy planetesimals that were the seeds of the giant planets and transneptunian objects. The book presents the key results obtained during the 1990s, in particular those collected during the apparition of the exceptional comets C/Hyakutake and C/Hale-Bopp in 1996-1997. The latest results obtained from the in situ exploration of comets P/Borrelly and P/Wild 2 are also discussed in detail. Each topic of is designed to be accessible to students or young researchers looking for basic, yet detailed, complete and accurate, information on comet science. With its emphasis on the origin of theories and the future of research, Comets II will enable scientists to make connections across disciplinary boundaries and will set the stage for discovery and new understanding in the coming years.




Encyclopedia of Astrobiology


Book Description

Now in its third edition the Encyclopedia of Astrobiology serves as the key to a common understanding in the extremely interdisciplinary community of astrobiologists. Each new or experienced researcher and graduate student in adjacent fields of astrobiology will appreciate this reference work in the quest to understand the big picture. The carefully selected group of active researchers contributing to this work are aiming to give a comprehensive international perspective on and to accelerate the interdisciplinary advance of astrobiology. The interdisciplinary field of astrobiology constitutes a joint arena where provocative discoveries are coalescing concerning, e.g. the prevalence of exoplanets, the diversity and hardiness of life, and its chances for emergence. Biologists, astrophysicists, (bio)-chemists, geoscientists and space scientists share this exciting mission of revealing the origin and commonality of life in the Universe. With its overview articles and its definitions the Encyclopedia of Astrobiology not only provides a common language and understanding for the members of the different disciplines but also serves for educating a new generation of young astrobiologists who are no longer separated by the jargon of individual scientific disciplines. This new edition offers ~170 new entries. More than half of the existing entries were updated, expanded or supplemented with figures supporting the understanding of the text. Especially in the fields of astrochemistry and terrestrial extremophiles but also in exoplanets and space sciences in general there is a huge body of new results that have been taken into account in this new edition. Because the entries in the Encyclopedia are in alphabetical order without regard for scientific field, this edition includes a section “Astrobiology by Discipline” which lists the entries by scientific field and subfield. This should be particularly helpful to those enquiring about astrobiology, as it illustrates the broad and detailed nature of the field.




The Pluto System After New Horizons


Book Description

Once perceived as distant, cold, dark, and seemingly unknowable, Pluto had long been marked as the farthest and most unreachable frontier for solar system exploration. After Voyager accomplished its final planetary reconnaissance at Neptune in 1989, Pluto and its cohort in the Kuiper Belt beckoned as the missing puzzle piece for completing the first reconnaissance of our solar system. In the decades following Voyager, a mission to the Pluto system was not only imagined but also achieved, culminating with the historic 2015 flyby by the New Horizons spacecraft. Pluto and its satellite system (“the Pluto system”), including its largest moon, Charon, have been revealed to be worlds of enormous complexity that fantastically exceed preconceptions. The Pluto System After New Horizons seeks to become the benchmark for synthesizing our understanding of the Pluto system. The volume’s lead editor is S. Alan Stern, who also serves as NASA’s New Horizons Principal Investigator; co-editors Richard P. Binzel, William M. Grundy, Jeffrey M. Moore, and Leslie A. Young are all co-investigators on New Horizons. Leading researchers from around the globe have spent the last five years assimilating Pluto system flyby data returned from New Horizons. The chapters in this volume form an enduring foundation for ongoing study and understanding of the Pluto system. The volume also advances insights into the nature of dwarf planets and Kuiper Belt objects, providing a cornerstone for planning new missions that may return to the Pluto system and explore others of the myriad important worlds beyond Neptune.




Astrobiology: Future Perspectives


Book Description

Astrobiology, a new exciting interdisciplinary research field, seeks to unravel the origin and evolution of life wherever it might exist in the Universe. The current view of the origin of life on Earth is that it is strongly connected to the origin and evolution of our planet and, indeed, of the Universe as a whole. We are fortunate to be living in an era where centuries of speculation about the two ancient and fundamental problems: the origin of life and its prevalence in the Universe are being replaced by experimental science. The subject of Astrobiology can be approached from many different perspectives. This book is focused on abiogenic organic matter from the viewpoint of astronomy and planetary science and considers its potential relevance to the origins of life on Earth and elsewhere. Guided by the review papers in this book, the concluding chapter aims to identify key questions to motivate future research and stimulate astrobiological applications of current and future research facilities and space missions. Today’s rich array of new spacecraft, telescopes and dedicated scientists promises a steady flow of discoveries and insights that will ultimately lead us to the answers we seek.




Encyclopedia of Astronomy & Astrophysics


Book Description

In a unique collaboration, Nature Publishing Group and Institute of Physics Publishing have published the most extensive and comprehensive reference work in astronomy and astrophysics. This unique resource covers the entire field of astronomy and astrophysics and this online version includes the full text of over 2,750 articles, plus sophisticated search and retrieval functionality and links to the primary literature. The Encyclopaedia's authority is assured by editorial and advisory boards drawn from the world's foremost astronomers and astrophysicists. This first class resource is an essential source of information for undergraduates, graduate students, researchers and seasoned professionals, as well as for committed amateurs, librarians and lay people wishing to consult the definitive astronomy and astrophysics reference work.