Surfactants and Polymers in Aqueous Solution


Book Description

Many industrial formulations such as detergents, paints, foodstuff and cosmetics contain both surfactants and polymers and their interaction govern many of the properties. This book is unique in that it discusses the solution chemistry of both surfactants and polymers and also the interactions between the two. The book, which is based on successful courses given by the authors since 1992, is a revised and extended version of the first edition that became a market success with six reprints since 1998. Surfactants and Polymers in Aqueous Solution is broad in scope, providing both theoretical insights and practical help for those active in the area. This book contains a thorough discussion of surfactant types and gives information of main routes of preparation. A chapter on novel surfactants has been included in the new edition. Physicochemical phenomena such as self-assembly in solution, adsorption, gel formation and foaming are discussed in detail. Particular attention is paid to the solution behaviour of surfactants and polymers containing polyoxyethylene chains. Surface active polymers are presented and their interaction with surfactants is a core topic of the book. Protein-surfactant interaction is also important and a new chapter deals with this issue. Microemulsions are treated in depth and several important application such as detergency and their use as media for chemical reactions are presented. Emulsions and the choice of emulsifier is discussed in some detail. The new edition also contains chapters on rheology and wetting. Surfactants and Polymers in Aqueous Solution is aimed at those dealing with surface chemistry research at universities and with surfactant formulation in industry.




Surface Chemistry of Surfactants and Polymers


Book Description

This book gives the reader an introduction to the field of surfactants in solution as well as polymers in solution. Starting with an introduction to surfactants the book then discusses their environmental and health aspects. Chapter 3 looks at fundamental forces in surface and colloid chemistry. Chapter 4 covers self-assembly and 5 phase diagrams. Chapter 6 reviews advanced self-assembly while chapter 7 looks at complex behaviour. Chapters 8 to 10 cover polymer adsorption at solid surfaces, polymers in solution and surface active polymers, respectively. Chapters 11 and 12 discuss adsorption and surface and interfacial tension, while Chapters 13- 16 deal with mixed surfactant systems. Chapter 17, 18 and 19 address microemulsions, colloidal stability and the rheology of polymer and surfactant solutions. Wetting and wetting agents, hydrophobization and hydrophobizing agents, solid dispersions, surfactant assemblies, foaming, emulsions and emulsifiers and microemulsions for soil and oil removal complete the coverage in chapters 20-25.




Natural Surfactants


Book Description

This book focuses on the use of natural surfactants in enhanced oil recovery, providing an overview of surfactants, their types, and different physical–chemical properties used to analyse the efficiency of surfactants. Natural surfactants discuss the history of the surfactants, their classification, and the use of surfactants in petroleum industry. Special attention has been paid to natural surfactants and their advantages over synthetic surfactants, including analysing their properties such as emulsification, interfacial tension, and wettability and how these can be used in EOR. This book offers an overview for researchers and graduate students in the fields of petroleum and chemical engineering, as well as oil and gas industry professionals.




DNA Interactions with Polymers and Surfactants


Book Description

A broad overview of the interaction of DNA with surfactants and polymers Due to the potential benefits of biotechnology, interest in the interaction between DNA and surfactants and polymers has become increasingly significant. Now, DNA Interactions with Polymers and Surfactants provides an extensive, up-to-date overview of the subject, giving readers a basis for understanding the factors leading to complexation between DNA and different cosolutes, including metal ions, polyelectrolytes, spermine, spermidine, surfactants and lipids, and proteins. Topical coverage includes: Polyelectrolytes, physico-chemical aspects and biological significance Solution behavior of nucleic acids Single DNA molecules: compaction and decompaction Interaction of DNA with surfactants and cationic polymers Interactions of histones with DNA DNA-DNA interactions The hydration of DNA-amphiphile complexes DNA-surfactant/lipid complexes at liquid interfaces DNA and DNA-surfactant complexes at solid surfaces The role of correlation forces for DNA-cosolute interactions Simulations of polyions Cross-linked DNA gels and gel particles DNA as an amphiphilic polymer Lipid-DNA interactions Covering both theoretical and practical aspects of the subject, DNA Interactions with Polymers and Surfactants is an ideal resource for chemists and biochemists working in gene and DNA delivery research in industry and academia, as well as for cell biologists, chemical engineers, molecular biologists, and development biologists in the pharmaceutical industry.




Gemini Surfactants


Book Description

Generating much interest in both academic and scientific circles, Gemini Surfactants gathers the most up-to-date research in gemini surfactantproduction and demonstrates how their propertiesand performance can revolutionize the current industrial application of these surfactants. It surveys the state of special gemini surfactants, including nonionic, zwitterionic, fluorinated, and amino-acid-based surfactants. Gemini Surfactants considers the synthesis, phase behavior, and rheology of gemini and related surfactants and clarifies the adsorption and surface tension behavior of gemini surfactants at air–water, oil–water, and solid–water interfaces. The book also details the physicochemical properties and microstructure of aqueous micellar solutions of gemini surfactants and describes mixed micellization between gemini surfactants and conventional surfactants.




Surfactant Science and Technology


Book Description

A solid introduction to the field of surfactant science, this new edition provides updated information about surfactant uses, structures, and preparation, as well as seven new chapters expanding on technology applications. Offers a comprehensive introduction and reference of the science and technology of surface active materials Elaborates, more fully than prior editions, aspects of surfactant crystal structure as well as their effects on applications Adds more information on new classes and applications of natural surfactants in light of environmental consequences of surfactant use




Polymeric Surfactants


Book Description

Polymeric Surfactants covers the structure and stability origins of these highly useful surfactants. Adsorption and solution properties in emulsions are discussed based on their underlying thermodynamics and kinetics. Research scientists and Ph.D. students investigating chemistry, chemical engineering and colloidal science will benefit from this text on polymeric surfactants and their value in preparation and stabilization of disperse systems.




Polymer-Surfactant Systems


Book Description

"Chronicles recent advances in our knowledge of polymer-surfactant systems, combining authoritative reviews of new experimental methods, instrumentation, and applications with fundamental discussions of classical methodologies and surveys of specific properties."




Chemical Enhanced Oil Recovery


Book Description

This book aims at presenting, describing, and summarizing the latest advances in polymer flooding regarding the chemical synthesis of the EOR agents and the numerical simulation of compositional models in porous media, including a description of the possible applications of nanotechnology acting as a booster of traditional chemical EOR processes. A large part of the world economy depends nowadays on non-renewable energy sources, most of them of fossil origin. Though the search for and the development of newer, greener, and more sustainable sources have been going on for the last decades, humanity is still fossil-fuel dependent. Primary and secondary oil recovery techniques merely produce up to a half of the Original Oil In Place. Enhanced Oil Recovery (EOR) processes are aimed at further increasing this value. Among these, chemical EOR techniques (including polymer flooding) present a great potential in low- and medium-viscosity oilfields. • Describes recent advances in chemical enhanced oil recovery. • Contains detailed description of polymer flooding and nanotechnology as promising boosting tools for EOR. • Includes both experimental and theoretical studies. About the Authors Patrizio Raffa is Assistant Professor at the University of Groningen. He focuses on design and synthesis of new polymeric materials optimized for industrial applications such as EOR, coatings and smart materials. He (co)authored about 40 articles in peer reviewed journals. Pablo Druetta works as lecturer at the University of Groningen (RUG) and as engineering consultant. He received his Ph.D. from RUG in 2018 and has been teaching at a graduate level for 15 years. His research focus lies on computational fluid dynamics (CFD).




Supramolecular Chemistry in Water


Book Description

Provides deep insight into the concepts and recent developments in the area of supramolecular chemistry in water Written by experts in their respective field, this comprehensive reference covers various aspects of supramolecular chemistry in water?from fundamental aspects to applications. It provides readers with a basic introduction to the current understanding of the properties of water and how they influence molecular recognition, and examines the different receptor types available in water and the types of substrates that can be bound. It also looks at areas to where they can be applied, such as materials, optical sensing, medicinal imaging, and catalysis. Supramolecular Chemistry in Water offers five major sections that address important topics like water properties, molecular recognition, association and aggregation phenomena, optical detection and imaging, and supramolecular catalysis. It covers chemistry and physical chemistry of water; water-mediated molecular recognition; peptide and protein receptors; nucleotide receptors; carbohydrate receptors; and ion receptors. The book also teaches readers all about coordination compounds; self-assembled polymers and gels; foldamers; vesicles and micelles; and surface-modified nanoparticles. In addition, it provides in-depth information on indicators and optical probes, as well as probes for medical imaging. -Covers, in a timely manner, an emerging area in chemistry that is growing more important every day -Addresses topics such as molecular recognition, aggregation, catalysis, and more -Offers comprehensive coverage of everything from fundamental aspects of supramolecular chemistry in water to its applications -Edited by one of the leading international scientists in the field Supramolecular Chemistry in Water is a one-stop-resource for all polymer chemists, catalytic chemists, biochemists, water chemists, and physical chemists involved in this growing area of research.