Environmental Statistics


Book Description

In modern society, we are ever more aware of the environmental issues we face, whether these relate to global warming, depletion of rivers and oceans, despoliation of forests, pollution of land, poor air quality, environmental health issues, etc. At the most fundamental level it is necessary to monitor what is happening in the environment – collecting data to describe the changing scene. More importantly, it is crucial to formally describe the environment with sound and validated models, and to analyse and interpret the data we obtain in order to take action. Environmental Statistics provides a broad overview of the statistical methodology used in the study of the environment, written in an accessible style by a leading authority on the subject. It serves as both a textbook for students of environmental statistics, as well as a comprehensive source of reference for anyone working in statistical investigation of environmental issues. Provides broad coverage of the methodology used in the statistical investigation of environmental issues. Covers a wide range of key topics, including sampling, methods for extreme data, outliers and robustness, relationship models and methods, time series, spatial analysis, and environmental standards. Includes many detailed practical and worked examples that illustrate the applications of statistical methods in environmental issues. Authored by a leading authority on environmental statistics.




Statistical Methods in Water Resources


Book Description

Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.




OECD Environmental Outlook


Book Description

The OECD Environmental Outlook provides economy-based projections of environmental pressures and changes in the state of the environment to 2020.




Environmental Statistics and Data Analysis


Book Description

This easy-to-understand introduction emphasizes the areas of probability theory and statistics that are important in environmental monitoring, data analysis, research, environmental field surveys, and environmental decision making. It communicates basic statistical theory with very little abstract mathematical notation, but without omitting importa




Environmental Statistics with S-PLUS


Book Description

A clear, comprehensive treatment of the subject, Environmental Statistics with S-PLUS surveys the vast array of statistical methods used to collect and analyze environmental data. The book explains what these methods are, how to use them, and where to find references to them. In addition, it provides insight into what to think about before you coll




Applied Statistics for Environmental Science with R


Book Description

Applied Statistics for Environmental Science with R presents the theory and application of statistical techniques in environmental science and aids researchers in choosing the appropriate statistical technique for analyzing their data. Focusing on the use of univariate and multivariate statistical methods, this book acts as a step-by-step resource to facilitate understanding in the use of R statistical software for interpreting data in the field of environmental science. Researchers utilizing statistical analysis in environmental science and engineering will find this book to be essential in solving their day-to-day research problems. - Includes step-by-step tutorials to aid in understanding the process and implementation of unique data - Presents statistical theory in a simple way without complex mathematical proofs - Shows how to analyze data using R software and provides R scripts for all examples and figures




EnvStats


Book Description

This book describes EnvStats, a new comprehensive R package for environmental statistics and the successor to the S-PLUS module EnvironmentalStats for S-PLUS (first released in 1997). EnvStats and R provide an open-source set of powerful functions for performing graphical and statistical analyses of environmental data, bringing major environmental statistical methods found in the literature and regulatory guidance documents into one statistical package, along with an extensive hypertext help system that explains what these methods do, how to use these methods, and where to find them in the environmental statistics literature. EnvStats also includes numerous built-in data sets from regulatory guidance documents and the environmental statistics literature. This book shows how to use EnvStats and R to easily: * graphically display environmental data * plot probability distributions * estimate distribution parameters and construct confidence intervals on the original scale for commonly used distributions such as the lognormal and gamma, as well as do this nonparametrically * estimate and construct confidence intervals for distribution percentiles or do this nonparametrically (e.g., to compare to an environmental protection standard) * perform and plot the results of goodness-of-fit tests * compute optimal Box-Cox data transformations * compute prediction limits and simultaneous prediction limits (e.g., to assess compliance at multiple sites for multiple constituents) * perform nonparametric estimation and test for seasonal trend (even in the presence of correlated observations) * perform power and sample size computations and create companion plots for sampling designs based on confidence intervals, hypothesis tests, prediction intervals, and tolerance intervals * deal with non-detect (censored) data * perform Monte Carlo simulation and probabilistic risk assessment * reproduce specific examples in EPA guidance documents EnvStats combined with other R packages (e.g., for spatial analysis) provides the environmental scientist, statistician, researcher, and technician with tools to “get the job done!”




Statistical Methods for Environmental Pollution Monitoring


Book Description

This book discusses a broad range of statistical design and analysis methods that are particularly well suited to pollution data. It explains key statistical techniques in easy-to-comprehend terms and uses practical examples, exercises, and case studies to illustrate procedures. Dr. Gilbert begins by discussing a space-time framework for sampling pollutants. He then shows how to use statistical sample survey methods to estimate average and total amounts of pollutants in the environment, and how to determine the number of field samples and measurements to collect for this purpose. Then a broad range of statistical analysis methods are described and illustrated. These include: * determining the number of samples needed to find hot spots * analyzing pollution data that are lognormally distributed * testing for trends over time or space * estimating the magnitude of trends * comparing pollution data from two or more populations New areas discussed in this sourcebook include statistical techniques for data that are correlated, reported as less than the measurement detection limit, or obtained from field-composited samples. Nonparametric statistical analysis methods are emphasized since parametric procedures are often not appropriate for pollution data. This book also provides an illustrated comprehensive computer code for nonparametric trend detection and estimation analyses as well as nineteen statistical tables to permit easy application of the discussed statistical techniques. In addition, many publications are cited that deal with the design of pollution studies and the statistical analysis of pollution data. This sourcebook will be a useful tool for applied statisticians, ecologists, radioecologists, hydrologists, biologists, environmental engineers, and other professionals who deal with the collection, analysis, and interpretation of pollution in air, water, and soil.




Practical Statistics for Environmental and Biological Scientists


Book Description

All students and researchers in environmental and biological sciences require statistical methods at some stage of their work. Many have a preconception that statistics are difficult and unpleasant and find that the textbooks available are difficult to understand. Practical Statistics for Environmental and Biological Scientists provides a concise, user-friendly, non-technical introduction to statistics. The book covers planning and designing an experiment, how to analyse and present data, and the limitations and assumptions of each statistical method. The text does not refer to a specific computer package but descriptions of how to carry out the tests and interpret the results are based on the approaches used by most of the commonly used packages, e.g. Excel, MINITAB and SPSS. Formulae are kept to a minimum and relevant examples are included throughout the text.




U.S. Health in International Perspective


Book Description

The United States is among the wealthiest nations in the world, but it is far from the healthiest. Although life expectancy and survival rates in the United States have improved dramatically over the past century, Americans live shorter lives and experience more injuries and illnesses than people in other high-income countries. The U.S. health disadvantage cannot be attributed solely to the adverse health status of racial or ethnic minorities or poor people: even highly advantaged Americans are in worse health than their counterparts in other, "peer" countries. In light of the new and growing evidence about the U.S. health disadvantage, the National Institutes of Health asked the National Research Council (NRC) and the Institute of Medicine (IOM) to convene a panel of experts to study the issue. The Panel on Understanding Cross-National Health Differences Among High-Income Countries examined whether the U.S. health disadvantage exists across the life span, considered potential explanations, and assessed the larger implications of the findings. U.S. Health in International Perspective presents detailed evidence on the issue, explores the possible explanations for the shorter and less healthy lives of Americans than those of people in comparable countries, and recommends actions by both government and nongovernment agencies and organizations to address the U.S. health disadvantage.