Loss Reserving Methods


Book Description







Stochastic Loss Reserving Using Generalized Linear Models


Book Description

In this monograph, authors Greg Taylor and Gráinne McGuire discuss generalized linear models (GLM) for loss reserving, beginning with strong emphasis on the chain ladder. The chain ladder is formulated in a GLM context, as is the statistical distribution of the loss reserve. This structure is then used to test the need for departure from the chain ladder model and to consider natural extensions of the chain ladder model that lend themselves to the GLM framework.







Stochastic Claims Reserving Methods in Insurance


Book Description

Claims reserving is central to the insurance industry. Insurance liabilities depend on a number of different risk factors which need to be predicted accurately. This prediction of risk factors and outstanding loss liabilities is the core for pricing insurance products, determining the profitability of an insurance company and for considering the financial strength (solvency) of the company. Following several high-profile company insolvencies, regulatory requirements have moved towards a risk-adjusted basis which has lead to the Solvency II developments. The key focus in the new regime is that financial companies need to analyze adverse developments in their portfolios. Reserving actuaries now have to not only estimate reserves for the outstanding loss liabilities but also to quantify possible shortfalls in these reserves that may lead to potential losses. Such an analysis requires stochastic modeling of loss liability cash flows and it can only be done within a stochastic framework. Therefore stochastic loss liability modeling and quantifying prediction uncertainties has become standard under the new legal framework for the financial industry. This book covers all the mathematical theory and practical guidance needed in order to adhere to these stochastic techniques. Starting with the basic mathematical methods, working right through to the latest developments relevant for practical applications; readers will find out how to estimate total claims reserves while at the same time predicting errors and uncertainty are quantified. Accompanying datasets demonstrate all the techniques, which are easily implemented in a spreadsheet. A practical and essential guide, this book is a must-read in the light of the new solvency requirements for the whole insurance industry.




Loss Reserving


Book Description

All property and casualty insurers are required to carry out loss reserving as a statutory accounting function. Thus, loss reserving is an essential sphere of activity, and one with its own specialized body of knowledge. While few books have been devoted to the topic, the amount of published research literature on loss reserving has almost doubled in size during the last fifteen years. Greg Taylor's book aims to provide a comprehensive, state-of-the-art treatment of loss reserving that reflects contemporary research advances to date. Divided into two parts, the book covers both the conventional techniques widely used in practice, and more specialized loss reserving techniques employing stochastic models. Part I, Deterministic Models, covers very practical issues through the abundant use of numerical examples that fully develop the techniques under consideration. Part II, Stochastic Models, begins with a chapter that sets up the additional theoretical material needed to illustrate stochastic modeling. The remaining chapters in Part II are self-contained, and thus can be approached independently of each other. A special feature of the book is the use throughout of a single real life data set to illustrate the numerical examples and new techniques presented. The data set illustrates most of the difficult situations presented in actuarial practice. This book will meet the needs for a reference work as well as for a textbook on loss reserving.




Handbook on Loss Reserving


Book Description

This handbook presents the basic aspects of actuarial loss reserving. Besides the traditional methods, it also includes a description of more recent ones and a discussion of certain problems occurring in actuarial practice, like inflation, scarce data, large claims, slow loss development, the use of market statistics, the need for simulation techniques and the task of calculating best estimates and ranges of future losses. In property and casualty insurance the provisions for payment obligations from losses that have occurred but have not yet been settled usually constitute the largest item on the liabilities side of an insurer's balance sheet. For this reason, the determination and evaluation of these loss reserves is of considerable economic importance for every property and casualty insurer. Actuarial students, academics as well as practicing actuaries will benefit from this overview of the most important actuarial methods of loss reserving by developing an understanding of the underlying stochastic models and how to practically solve some problems which may occur in actuarial practice.




Micro-Level Stochastic Loss Reserving for General Insurance


Book Description

To meet future liabilities general insurance companies will set-up reserves. Predicting future cash-flows is essential in this process. Actuarial loss reserving methods will help them to do this in a sound way. The last decennium a vast literature about stochastic loss reserving for the general insurance business has been developed. Apart from few exceptions, all of these papers are based on data aggregated in run-off triangles. However, such an aggregate data set is a summary of an underlying, much more detailed data base that is available to the insurance company. We refer to this data set at individual claim level as "micro-level data." We investigate whether the use of such micro-level claim data can improve the reserving process. A realistic micro-level data set on liability claims (material and injury) from a European insurance company is modeled. Stochastic processes are specified for the various aspects involved in the development of a claim: the time of occurrence, the delay between occurrence and the time of reporting to the company, the occurrence of payments and their size and the final settlement of the claim. These processes are calibrated to the historical individual data of the portfolio and used for the projection of future claims. Through an out-of-sample prediction exercise we show that the micro-level approach provides the actuary with detailed and valuable reserve calculations. A comparison with results from traditional actuarial reserving techniques is included. For our case-study reserve calculations based on the micro-level model are to be preferred; compared to traditional methods, they reflect real outcomes in a more realistic way.




Loss Reserving


Book Description

The paper reviews the development of loss reserving models over the past, classifying them according to an elementary taxonomy. The taxonomic components include (1) the algebraic structure of the model, (2) the form of its parameter estimation, (3) whether or not it is explicitly stochastic, and (4) whether or not its parameters evolve over time. Particular attention is given to one of the higher species of model, involving complex structure, optimal estimation, and evolutionary parameters. A generalisation of the Kalman filter is considered as a basis of adaptive loss reserving in this case. Real life numerical examples are provided.Some implications of this type of data analysis for loss reserving are discussed, with particular reference to the form of data set used. The use of triangular arrays is questioned, and alternatives examined. Again, real life numerical examples are provided.