Creep and High Temperature Deformation of Metals and Alloys


Book Description

By the late 1940s, and since then, the continuous development of dislocation theories have provided the basis for correlating the macroscopic time-dependent deformation of metals and alloys—known as creep—to the time-dependent processes taking place within the metals and alloys. High-temperature deformation and stress relaxation effects have also been explained and modeled on similar bases. The knowledge of high-temperature deformation as well as its modeling in conventional or unconventional situations is becoming clearer year by year, with new contemporary and better performing high-temperature materials being constantly produced and investigated. This book includes recent contributions covering relevant topics and materials in the field in an innovative way. In the first section, contributions are related to the general description of creep deformation, damage, and ductility, while in the second section, innovative testing techniques of creep deformation are presented. The third section deals with creep in the presence of complex loading/temperature changes and environmental effects, while the last section focuses on material microstructure–creep correlations for specific material classes. The quality and potential of specific materials and microstructures, testing conditions, and modeling as addressed by specific contributions will surely inspire scientists and technicians in their own innovative approaches and studies on creep and high-temperature deformation.







Advanced Mechanics of Materials


Book Description

Building on the success of five previous editions, this new sixth edition continues to present a unified approach to the study of the behavior of structural members and the development of design and failure criteria. The text treats each type of structural member in sufficient detail so that the resulting solutions are directly applicable to real-world problems. New examples for various types of member and a large number of new problems are included. To facilitate the transition from elementary mechanics of materials to advanced topics, a review of the elements of mechanics of materials is presented along with appropriate examples and problems.




Fundamentals of Creep in Metals and Alloys


Book Description

* Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials * Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures * Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussionUnderstanding the strength of materials at a range of temperatures is critically important to a huge number of researchers and practitioners from a wide range of fields and industry sectors including metallurgists, industrial designers, aerospace R&D personnel, and structural engineers. The most up-to date and comprehensive book in the field, Fundamentals of Creep in Metals and Alloys discusses the fundamentals of time-dependent plasticity or creep plasticity in metals, alloys and metallic compounds. This is the first book of its kind that provides broad coverage of a range of materials not just a sub-group such as metallic compounds, superalloys or crystals. As such it presents the most balanced view of creep for all materials scientists. The theory of all of these phenomena are extensively reviewed and analysed in view of an extensive bibliography that includes the most recent publications in the field. All sections of the book have undergone extensive peer review and therefore the reader can be sure they have access to the most up-to-date research, fully interrogated, from the world's leading investigators.· Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials· Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures· Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion




Basic Modeling and Theory of Creep of Metallic Materials


Book Description

This open access book features an in-depth exploration of the intricate creep behavior exhibited by metallic materials, with a specific focus on elucidating the underlying mechanical properties governing their response at elevated temperatures, particularly in the context of polycrystalline alloys. Traditional approaches to characterizing mechanical properties have historically relied upon empirical models replete with numerous adjustable parameters, painstakingly tuned to match experimental data. While these methods offer practical simplicity, they often yield outcomes that defy meaningful extrapolation and application to novel systems, invariably necessitating the recalibration of parameters afresh. In stark contrast, this book compiles a compendium of models sourced from the scientific literature, meticulously crafted through ab initio methodologies rooted in fundamental physical principles. Notably, these models stand apart by their conspicuous absence of adjustable parameters. This pioneering effort is envisioned as a groundbreaking initiative, marking the first of its kind in the field. The resulting models, bereft of arbitrary tuning, offer a level of predictability hitherto unattained. Notably, they provide a secure foundation for ascertaining operational mechanisms, contributing significantly to enhancing our understanding of material behavior in high-temperature environments. This open access book is a valuable resource for researchers and seasoned students engaged in the study of creep phenomena in metallic materials. Readers will find a comprehensive exposition of these novel, parameter-free models, facilitating a deeper comprehension of the intricate mechanics governing material deformation at elevated temperatures.




Engineering Fundamentals and Environmental Effects


Book Description

Fracture: An Advanced Treatise, Volume III: Engineering Fundamentals and Environmental Effects provides information pertinent to the engineering fundamentals and environmental effects pertaining to various types of fracture. This book focuses on the fracture design of structures as well as the engineering fundamentals of fracture and environmental effects. Organized into 12 chapters, this volume begins with an overview of the analytical aspects of linear fracture mechanics, which are complete relative to basic formulation and two-dimensional static problems. This text then reviews the fundamental equations of the statics of solids, with emphasis on the idealization of behavior into elastic, plastic, or viscoelastic types. Other chapters consider a notch analysis of fracture. This book discusses as well the three phases of the fracture process. The final chapter deals with environment cracking under static load. This book is a valuable resource for engineers, students, and research workers in industrial organizations, education and research institutions, and various government agencies.




Techniques of Metals Research


Book Description










The Effect of Nuclear Radiation on Structural Metals


Book Description

The effect of fast-neutron (>1 Mev) irradiation on the mechanical properties of structural metals and alloys was studied. Although the yield strengths and ultimate tensile strengths are increased su stantially for most materials, the ductility suffers severe decreases. This report presents these changes in properties of several structural metals for a number of neutron exposures within the 1.0 x 10 to the 18th power to 5.0 x 10 to the 21st power n/sq cm range. Data summarizing these effects on several classes of materials such as carbon steels, low-alloy steels, stainless steels, Zr-base alloys, ni-base alloys, Al-base alloys, and Ta are given. Additional data which show the influence f irradiation temperatures and of post-irradiation annealing on the radiation-induced property changes are also given and discussed. Increases as great as 175% in yield strength, 100% in ultimate strength, and decreases of 80% in total elongation are reported for fast-neutron exposures as great as 5 10 to the 21st power n/sq cm. (Author).