Survey Sampling Theory and Applications


Book Description

Survey Sampling Theory and Applications offers a comprehensive overview of survey sampling, including the basics of sampling theory and practice, as well as research-based topics and examples of emerging trends. The text is useful for basic and advanced survey sampling courses. Many other books available for graduate students do not contain material on recent developments in the area of survey sampling. The book covers a wide spectrum of topics on the subject, including repetitive sampling over two occasions with varying probabilities, ranked set sampling, Fays method for balanced repeated replications, mirror-match bootstrap, and controlled sampling procedures. Many topics discussed here are not available in other text books. In each section, theories are illustrated with numerical examples. At the end of each chapter theoretical as well as numerical exercises are given which can help graduate students. - Covers a wide spectrum of topics on survey sampling and statistics - Serves as an ideal text for graduate students and researchers in survey sampling theory and applications - Contains material on recent developments in survey sampling not covered in other books - Illustrates theories using numerical examples and exercises




Advanced Sampling Theory with Applications


Book Description

This book is a multi-purpose document. It can be used as a text by teachers, as a reference manual by researchers, and as a practical guide by statisticians. It covers 1165 references from different research journals through almost 1900 citations across 1194 pages, a large number of complete proofs of theorems, important results such as corollaries, and 324 unsolved exercises from several research papers. It includes 159 solved, data-based, real life numerical examples in disciplines such as Agriculture, Demography, Social Science, Applied Economics, Engineering, Medicine, and Survey Sampling. These solved examples are very useful for an understanding of the applications of advanced sampling theory in our daily life and in diverse fields of science. An additional 173 unsolved practical problems are given at the end of the chapters. University and college professors may find these useful when assigning exercises to students. Each exercise gives exposure to several complete research papers for researchers/students.




Sampling Theory of Surveys, with Applications


Book Description

Basic theory: simple random sampling. Sampling with varying probabilities. Stratified sampling. Ratio method of estimation. Regression method estimation. Choice of sampling unit. Sub-sampling. Systematic sampling. Non-sampling errors.







Survey Sampling


Book Description




Sampling Theory and Practice


Book Description

The three parts of this book on survey methodology combine an introduction to basic sampling theory, engaging presentation of topics that reflect current research trends, and informed discussion of the problems commonly encountered in survey practice. These related aspects of survey methodology rarely appear together under a single connected roof, making this book a unique combination of materials for teaching, research and practice in survey sampling. Basic knowledge of probability theory and statistical inference is assumed, but no prior exposure to survey sampling is required. The first part focuses on the design-based approach to finite population sampling. It contains a rigorous coverage of basic sampling designs, related estimation theory, model-based prediction approach, and model-assisted estimation methods. The second part stems from original research conducted by the authors as well as important methodological advances in the field during the past three decades. Topics include calibration weighting methods, regression analysis and survey weighted estimating equation (EE) theory, longitudinal surveys and generalized estimating equations (GEE) analysis, variance estimation and resampling techniques, empirical likelihood methods for complex surveys, handling missing data and non-response, and Bayesian inference for survey data. The third part provides guidance and tools on practical aspects of large-scale surveys, such as training and quality control, frame construction, choices of survey designs, strategies for reducing non-response, and weight calculation. These procedures are illustrated through real-world surveys. Several specialized topics are also discussed in detail, including household surveys, telephone and web surveys, natural resource inventory surveys, adaptive and network surveys, dual-frame and multiple frame surveys, and analysis of non-probability survey samples. This book is a self-contained introduction to survey sampling that provides a strong theoretical base with coverage of current research trends and pragmatic guidance and tools for conducting surveys.




Model Assisted Survey Sampling


Book Description

Now available in paperback, this book provides a comprehensive account of survey sampling theory and methodology suitable for students and researchers across a variety of disciplines. It shows how statistical modeling is a vital component of the sampling process and in the choice of estimation technique. The first textbook that systematically extends traditional sampling theory with the aid of a modern model assisted outlook. Covers classical topics as well as areas where significant new developments have taken place.




Sample Surveys: Design, Methods and Applications


Book Description

This new handbook contains the most comprehensive account of sample surveys theory and practice to date. It is a second volume on sample surveys, with the goal of updating and extending the sampling volume published as volume 6 of the Handbook of Statistics in 1988. The present handbook is divided into two volumes (29A and 29B), with a total of 41 chapters, covering current developments in almost every aspect of sample surveys, with references to important contributions and available software. It can serve as a self contained guide to researchers and practitioners, with appropriate balance between theory and real life applications. Each of the two volumes is divided into three parts, with each part preceded by an introduction, summarizing the main developments in the areas covered in that part. Volume 29A deals with methods of sample selection and data processing, with the later including editing and imputation, handling of outliers and measurement errors, and methods of disclosure control. The volume contains also a large variety of applications in specialized areas such as household and business surveys, marketing research, opinion polls and censuses. Volume 29B is concerned with inference, distinguishing between design-based and model-based methods and focusing on specific problems such as small area estimation, analysis of longitudinal data, categorical data analysis and inference on distribution functions. The volume contains also chapters dealing with case-control studies, asymptotic properties of estimators and decision theoretic aspects. - Comprehensive account of recent developments in sample survey theory and practice - Discusses a wide variety of diverse applications - Comprehensive bibliography




Sampling and Estimation from Finite Populations


Book Description

A much-needed reference on survey sampling and its applications that presents the latest advances in the field Seeking to show that sampling theory is a living discipline with a very broad scope, this book examines the modern development of the theory of survey sampling and the foundations of survey sampling. It offers readers a critical approach to the subject and discusses putting theory into practice. It also explores the treatment of non-sampling errors featuring a range of topics from the problems of coverage to the treatment of non-response. In addition, the book includes real examples, applications, and a large set of exercises with solutions. Sampling and Estimation from Finite Populations begins with a look at the history of survey sampling. It then offers chapters on: population, sample, and estimation; simple and systematic designs; stratification; sampling with unequal probabilities; balanced sampling; cluster and two-stage sampling; and other topics on sampling, such as spatial sampling, coordination in repeated surveys, and multiple survey frames. The book also includes sections on: post-stratification and calibration on marginal totals; calibration estimation; estimation of complex parameters; variance estimation by linearization; and much more. Provides an up-to-date review of the theory of sampling Discusses the foundation of inference in survey sampling, in particular, the model-based and design-based frameworks Reviews the problems of application of the theory into practice Also deals with the treatment of non sampling errors Sampling and Estimation from Finite Populations is an excellent book for methodologists and researchers in survey agencies and advanced undergraduate and graduate students in social science, statistics, and survey courses.




Sampling


Book Description

This edition is a reprint of the second edition published by Cengage Learning, Inc. Reprinted with permission. What is the unemployment rate? How many adults have high blood pressure? What is the total area of land planted with soybeans? Sampling: Design and Analysis tells you how to design and analyze surveys to answer these and other questions. This authoritative text, used as a standard reference by numerous survey organizations, teaches sampling using real data sets from social sciences, public opinion research, medicine, public health, economics, agriculture, ecology, and other fields. The book is accessible to students from a wide range of statistical backgrounds. By appropriate choice of sections, it can be used for a graduate class for statistics students or for a class with students from business, sociology, psychology, or biology. Readers should be familiar with concepts from an introductory statistics class including linear regression; optional sections contain the statistical theory, for readers who have studied mathematical statistics. Distinctive features include: More than 450 exercises. In each chapter, Introductory Exercises develop skills, Working with Data Exercises give practice with data from surveys, Working with Theory Exercises allow students to investigate statistical properties of estimators, and Projects and Activities Exercises integrate concepts. A solutions manual is available. An emphasis on survey design. Coverage of simple random, stratified, and cluster sampling; ratio estimation; constructing survey weights; jackknife and bootstrap; nonresponse; chi-squared tests and regression analysis. Graphing data from surveys. Computer code using SAS® software. Online supplements containing data sets, computer programs, and additional material. Sharon Lohr, the author of Measuring Crime: Behind the Statistics, has published widely about survey sampling and statistical methods for education, public policy, law, and crime. She has been recognized as Fellow of the American Statistical Association, elected member of the International Statistical Institute, and recipient of the Gertrude M. Cox Statistics Award and the Deming Lecturer Award. Formerly Dean’s Distinguished Professor of Statistics at Arizona State University and a Vice President at Westat, she is now a freelance statistical consultant and writer. Visit her website at www.sharonlohr.com.