An Introduction to Survival Analysis Using Stata, Second Edition


Book Description

"[This book] provides new researchers with the foundation for understanding the various approaches for analyzing time-to-event data. This book serves not only as a tutorial for those wishing to learn survival analysis but as a ... reference for experienced researchers ..."--Book jacket.




Registries for Evaluating Patient Outcomes


Book Description

This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.




Handbook of Survival Analysis


Book Description

Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians




Applied Survival Analysis


Book Description

THE MOST PRACTICAL, UP-TO-DATE GUIDE TO MODELLING AND ANALYZING TIME-TO-EVENT DATA—NOW IN A VALUABLE NEW EDITION Since publication of the first edition nearly a decade ago, analyses using time-to-event methods have increase considerably in all areas of scientific inquiry mainly as a result of model-building methods available in modern statistical software packages. However, there has been minimal coverage in the available literature to9 guide researchers, practitioners, and students who wish to apply these methods to health-related areas of study. Applied Survival Analysis, Second Edition provides a comprehensive and up-to-date introduction to regression modeling for time-to-event data in medical, epidemiological, biostatistical, and other health-related research. This book places a unique emphasis on the practical and contemporary applications of regression modeling rather than the mathematical theory. It offers a clear and accessible presentation of modern modeling techniques supplemented with real-world examples and case studies. Key topics covered include: variable selection, identification of the scale of continuous covariates, the role of interactions in the model, assessment of fit and model assumptions, regression diagnostics, recurrent event models, frailty models, additive models, competing risk models, and missing data. Features of the Second Edition include: Expanded coverage of interactions and the covariate-adjusted survival functions The use of the Worchester Heart Attack Study as the main modeling data set for illustrating discussed concepts and techniques New discussion of variable selection with multivariable fractional polynomials Further exploration of time-varying covariates, complex with examples Additional treatment of the exponential, Weibull, and log-logistic parametric regression models Increased emphasis on interpreting and using results as well as utilizing multiple imputation methods to analyze data with missing values New examples and exercises at the end of each chapter Analyses throughout the text are performed using Stata® Version 9, and an accompanying FTP site contains the data sets used in the book. Applied Survival Analysis, Second Edition is an ideal book for graduate-level courses in biostatistics, statistics, and epidemiologic methods. It also serves as a valuable reference for practitioners and researchers in any health-related field or for professionals in insurance and government.




Modeling Survival Data: Extending the Cox Model


Book Description

This book is for statistical practitioners, particularly those who design and analyze studies for survival and event history data. Building on recent developments motivated by counting process and martingale theory, it shows the reader how to extend the Cox model to analyze multiple/correlated event data using marginal and random effects. The focus is on actual data examples, the analysis and interpretation of results, and computation. The book shows how these new methods can be implemented in SAS and S-Plus, including computer code, worked examples, and data sets.




Design and Analysis of Group-randomized Trials


Book Description

Community or group-randomized trials, which are usually done to evaluate the effect of health promotion effors. It reviews the underlying issues, describes the most widely used research design, and presents the many approaches to analysis that are now available.




Regression Modeling Strategies


Book Description

Many texts are excellent sources of knowledge about individual statistical tools, but the art of data analysis is about choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for dealing with nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap. This text realistically deals with model uncertainty and its effects on inference to achieve "safe data mining".




Pragmatics of Uncertainty


Book Description

A fair question to ask of an advocate of subjective Bayesianism (which the author is) is "how would you model uncertainty?" In this book, the author writes about how he has done it using real problems from the past, and offers additional comments about the context in which he was working.




Prognosis Research in Healthcare


Book Description

"What is going to happen to me?" Most patients ask this question during a clinical encounter with a health professional. As well as learning what problem they have (diagnosis) and what needs to be done about it (treatment), patients want to know about their future health and wellbeing (prognosis). Prognosis research can provide answers to this question and satisfy the need for individuals to understand the possible outcomes of their condition, with and without treatment. Central to modern medical practise, the topic of prognosis is the basis of decision making in healthcare and policy development. It translates basic and clinical science into practical care for patients and populations. Prognosis Research in Healthcare: Concepts, Methods and Impact provides a comprehensive overview of the field of prognosis and prognosis research and gives a global perspective on how prognosis research and prognostic information can improve the outcomes of healthcare. It details how to design, carry out, analyse and report prognosis studies, and how prognostic information can be the basis for tailored, personalised healthcare. In particular, the book discusses how information about the characteristics of people, their health, and environment can be used to predict an individual's future health. Prognosis Research in Healthcare: Concepts, Methods and Impact, addresses all types of prognosis research and provides a practical step-by-step guide to undertaking and interpreting prognosis research studies, ideal for medical students, health researchers, healthcare professionals and methodologists, as well as for guideline and policy makers in healthcare wishing to learn more about the field of prognosis.




Core Statistics


Book Description

Core Statistics is a compact starter course on the theory, models, and computational tools needed to make informed use of powerful statistical methods.