Sustainable and Resilient Critical Infrastructure Systems


Book Description

Sustainable and resilient critical infrastructure systems is an emerging paradigm in an evolving era of depleting assets in the midst of natural and man-made threats to provide a sustainable and high quality of life with optimized resources from social, economic, societal and environmental considerations. The increasing complexity and interconnectedness of civil and other interdependent infrastructure systems (electric power, energy, cyber-infrastructures, etc.) require inter- and multidisciplinary expertise required to engineer, monitor, and sustain these distributed large-scale complex adaptive infrastructure systems. This edited book is motivated by recent advances in simulation, modeling, sensing, communications/information, and intelligent and sustainable technologies that have resulted in the development of sophisticated methodologies and instruments to design, characterize, optimize, and evaluate critical infrastructure systems, their resilience, and their condition and the factors that cause their deterioration. Specific topics discussed in this book include, but are not limited to: optimal infrastructure investment allocation for sustainability, framework for manifestation of tacit critical infrastructure knowledge, interdependencies between energy and transportation systems for national long term planning, intelligent transportation infrastructure technologies, emergent research issues in infrastructure interdependence research, framework for assessing the resilience of infrastructure and economic systems, maintenance optimization for heterogeneous infrastructure systems, optimal emergency infrastructure inspection scheduling, and sustainable rehabilitation of deteriorated transportation infrastructure systems.




Critical Infrastructures Resilience


Book Description

This text offers comprehensive and principled, yet practical, guidelines to critical infrastructures resilience. Extreme events and stresses, including those that may be unprecedented but are no longer surprising, have disproportionate effects on critical infrastructures and hence on communities, cities, and megaregions. Critical infrastructures include buildings and bridges, dams, levees, and sea walls, as well as power plants and chemical factories, besides lifeline networks such as multimodal transportation, power grids, communication, and water or wastewater. The growing interconnectedness of natural-built-human systems causes cascading infrastructure failures and necessitates simultaneous recovery. This text explores the new paradigm centered on the concept of resilience by approaching the challenges posed by globalization, climate change, and growing urbanization on critical infrastructures and key resources through the combination of policy and engineering perspectives. It identifies solutions that are scientifically credible, data driven, and sound in engineering principles while concurrently informed by and supportive of social and policy imperatives. Critical Infrastructures Resilience will be of interest to students of engineering and policy.




Routledge Handbook of Sustainable and Resilient Infrastructure


Book Description

To best serve current and future generations, infrastructure needs to be resilient to the changing world while using limited resources in a sustainable manner. Research on and funding towards sustainability and resilience are growing rapidly, and significant research is being carried out at a number of institutions and centers worldwide. This handbook brings together current research on sustainable and resilient infrastructure and, in particular, stresses the fundamental nexus between sustainability and resilience. It aims to coalesce work from a large and diverse group of contributors across a wide range of disciplines including engineering, technology and informatics, urban planning, public policy, economics, and finance. Not only does it present a theoretical formulation of sustainability and resilience but it also demonstrates how these ideals can be realized in practice. This work will provide a reference text to students and scholars of a number of disciplines.




Lifelines


Book Description

Infrastructure—electricity, telecommunications, roads, water, and sanitation—are central to people’s lives. Without it, they cannot make a living, stay healthy, and maintain a good quality of life. Access to basic infrastructure is also a key driver of economic development. This report lays out a framework for understanding infrastructure resilience - the ability of infrastructure systems to function and meet users’ needs during and after a natural hazard. It focuses on four infrastructure systems that are essential to economic activity and people’s well-being: power systems, including the generation, transmission, and distribution of electricity; water and sanitation—especially water utilities; transport systems—multiple modes such as road, rail, waterway, and airports, and multiple scales, including urban transit and rural access; and telecommunications, including telephone and Internet connections.




The Future of National Infrastructure


Book Description

This book sets out a systematic approach to making long-term choices about national infrastructure systems, for practitioners, policy-makers and academics.




Identifying, Quantifying, and Proving Loss of Productivity


Book Description

"MOP 144 provides guidance and underlying framework for creating consistency across hazards, systems, and sectors in the design of new infrastructure systems and in enhancing the resilience of existing ones"--




Healthy, Resilient, and Sustainable Communities After Disasters


Book Description

In the devastation that follows a major disaster, there is a need for multiple sectors to unite and devote new resources to support the rebuilding of infrastructure, the provision of health and social services, the restoration of care delivery systems, and other critical recovery needs. In some cases, billions of dollars from public, private and charitable sources are invested to help communities recover. National rhetoric often characterizes these efforts as a "return to normal." But for many American communities, pre-disaster conditions are far from optimal. Large segments of the U.S. population suffer from preventable health problems, experience inequitable access to services, and rely on overburdened health systems. A return to pre-event conditions in such cases may be short-sighted given the high costs - both economic and social - of poor health. Instead, it is important to understand that the disaster recovery process offers a series of unique and valuable opportunities to improve on the status quo. Capitalizing on these opportunities can advance the long-term health, resilience, and sustainability of communities - thereby better preparing them for future challenges. Healthy, Resilient, and Sustainable Communities After Disasters identifies and recommends recovery practices and novel programs most likely to impact overall community public health and contribute to resiliency for future incidents. This book makes the case that disaster recovery should be guided by a healthy community vision, where health considerations are integrated into all aspects of recovery planning before and after a disaster, and funding streams are leveraged in a coordinated manner and applied to health improvement priorities in order to meet human recovery needs and create healthy built and natural environments. The conceptual framework presented in Healthy, Resilient, and Sustainable Communities After Disasters lays the groundwork to achieve this goal and provides operational guidance for multiple sectors involved in community planning and disaster recovery. Healthy, Resilient, and Sustainable Communities After Disasters calls for actions at multiple levels to facilitate recovery strategies that optimize community health. With a shared healthy community vision, strategic planning that prioritizes health, and coordinated implementation, disaster recovery can result in a communities that are healthier, more livable places for current and future generations to grow and thrive - communities that are better prepared for future adversities.




Resilient Urban Futures


Book Description

This open access book addresses the way in which urban and urbanizing regions profoundly impact and are impacted by climate change. The editors and authors show why cities must wage simultaneous battles to curb global climate change trends while adapting and transforming to address local climate impacts. This book addresses how cities develop anticipatory and long-range planning capacities for more resilient futures, earnest collaboration across disciplines, and radical reconfigurations of the power regimes that have institutionalized the disenfranchisement of minority groups. Although planning processes consider visions for the future, the editors highlight a more ambitious long-term positive visioning approach that accounts for unpredictability, system dynamics and equity in decision-making. This volume brings the science of urban transformation together with practices of professionals who govern and manage our social, ecological and technological systems to design processes by which cities may achieve resilient urban futures in the face of climate change.




Resilience and Risk


Book Description

This volume addresses the challenges associated with methodology and application of risk and resilience science and practice to address emerging threats in environmental, cyber, infrastructure and other domains. The book utilizes the collective expertise of scholars and experts in industry, government and academia in the new and emerging field of resilience in order to provide a more comprehensive and universal understanding of how resilience methodology can be applied in various disciplines and applications. This book advocates for a systems-driven view of resilience in applications ranging from cyber security to ecology to social action, and addresses resilience-based management in infrastructure, cyber, social domains and methodology and tools. Risk and Resilience has been written to open up a transparent dialog on resilience management for scientists and practitioners in all relevant academic disciplines and can be used as supplement in teaching risk assessment and management courses.




Climate-Resilient Infrastructure


Book Description

Abstract: Prepared by the Committee on Adaptation to a Changing Climate of ASCE Civil infrastructure systems traditionally have been designed for appropriate functionality, durability, and safety for climate and weather extremes during their full-service lives; however, climate scientists inform us that the extremes of climate and weather have altered from historical values in ways difficult to predict or project. Climate-Resilient Infrastructure: Adaptive Design and Risk Management, MOP 140, provides guidance for and contributes to the developing or enhancing of methods for infrastructure analysis and design in a world in which risk profiles are changing and can be projected with varying degrees of uncertainty requiring a new design philosophy to meet this challenge. The underlying approaches in this manual of practice (MOP) are based on probabilistic methods for quantitative risk analysis, and the design framework provided focuses on identifying and analyzing low-regret, adaptive strategies to make a project more resilient. Beginning with an overview of the driving forces and hazards associated with a changing climate, subsequent chapters in MOP 140 provide observational methods, illustrative examples, and case studies; estimation of extreme events particularly related to precipitation with guidance on monitoring and measuring methods; flood design criteria and the development of project design flood elevations; computational methods of determining flood loads; adaptive design and adaptive risk management in the context of life-cycle engineering and economics; and climate resilience technologies. MOP 140 will be of interest to engineers, researchers, planners, and other stakeholders charged with adaptive design decisions to achieve infrastructure resilience targets while minimizing life-cycle costs in a changing climate