Sustainable Separation Engineering


Book Description

Sustainable Separation Engineering Explore an insightful collection of resources exploring conventional and emerging materials and techniques for separations In Sustainable Separation Engineering: Materials, Techniques and Process Development, a team of distinguished chemical engineers delivers a comprehensive discussion of the latest trends in sustainable separation engineering. Designed to facilitate understanding and knowledge transfer between materials scientists and chemical engineers, the book is beneficial for scientists, practitioners, technologists, and industrial managers. Written from a sustainability perspective, the status and need for more emphasis on sustainable separations in the chemical engineering curriculum is highlighted. The accomplished editors have included contributions that explore a variety of conventional and emerging materials and techniques for efficient separations, as well as the prospects for the use of artificial intelligence in separation science and technology. Case studies round out the included material, discussing a broad range of separation applications, like battery recycling, carbon sequestration, and biofuel production. This edited volume also provides: Thorough introductions to green materials for sustainable separations, as well as advanced materials for sustainable oil and water separation Comprehensive explorations of the recycling of lithium batteries and ionic liquids for sustainable separation processes Practical discussions of carbon sequestration, the recycling of polymer materials, and AI for the development of separation materials and processes In-depth examinations of membranes for sustainable separations, green extraction processes, and adsorption processes for sustainable separations Perfect for academic and industrial researchers interested in the green and sustainable aspects of separation science, Sustainable Separation Engineering: Materials, Techniques and Process Development is an indispensable resource for chemical engineers, materials scientists, polymer scientists, and renewable energy professionals.




Sustainable Process Engineering


Book Description

Sustainable process engineering is a methodology to design new and redesign existing processes that follow the principles of green chemistry and green engineering, and ultimately contribute to a sustainable development. The newest achievements of chemical engineering, opened new opportunities to design more efficient, safe, compact and environmentally benign chemical processes. The book provides a guide to sustainable process design applicable in various industrial fields. • Discusses the topic from a wide angle: chemistry, materials, processes, and equipment. • Includes state-of-the-art research achievements that are yet to be industrially implemented. • Transfers knowledge between chemists and chemical engineers. • QR codes direct the readers to animations, short videos, magazines, and blogs on specific topics • Worked examples deepen the understanding of the sustainable assessment of chemical manufacturing processes




Sustainable Environmental Engineering


Book Description

The important resource that explores the twelve design principles of sustainable environmental engineering Sustainable Environmental Engineering (SEE) is to research, design, and build Environmental Engineering Infrastructure System (EEIS) in harmony with nature using life cycle cost analysis and benefit analysis and life cycle assessment and to protect human health and environments at minimal cost. The foundations of the SEE are the twelve design principles (TDPs) with three specific rules for each principle. The TDPs attempt to transform how environmental engineering could be taught by prioritizing six design hierarchies through six different dimensions. Six design hierarchies are prevention, recovery, separation, treatment, remediation, and optimization. Six dimensions are integrated system, material economy, reliability on spatial scale, resiliency on temporal scale, and cost effectiveness. In addition, the authors, two experts in the field, introduce major computer packages that are useful to solve real environmental engineering design problems. The text presents how specific environmental engineering issues could be identified and prioritized under climate change through quantification of air, water, and soil quality indexes. For water pollution control, eight innovative technologies which are critical in the paradigm shift from the conventional environmental engineering design to water resource recovery facility (WRRF) are examined in detail. These new processes include UV disinfection, membrane separation technologies, Anammox, membrane biological reactor, struvite precipitation, Fenton process, photocatalytic oxidation of organic pollutants, as well as green infrastructure. Computer tools are provided to facilitate life cycle cost and benefit analysis of WRRF. This important resource: • Includes statistical analysis of engineering design parameters using Statistical Package for the Social Sciences (SPSS) • Presents Monte Carlos simulation using Crystal ball to quantify uncertainty and sensitivity of design parameters • Contains design methods of new energy, materials, processes, products, and system to achieve energy positive WRRF that are illustrated with Matlab • Provides information on life cycle costs in terms of capital and operation for different processes using MatLab Written for senior or graduates in environmental or chemical engineering, Sustainable Environmental Engineering defines and illustrates the TDPs of SEE. Undergraduate, graduate, and engineers should find the computer codes are useful in their EEIS design. The exercise at the end of each chapter encourages students to identify EEI engineering problems in their own city and find creative solutions by applying the TDPs. For more information, please visit www.tang.fiu.edu.




Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes


Book Description

Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes is an edited collection of contributions from leaders in their field. It takes a holistic view of sustainability in chemical and process engineering design, and incorporates economic analysis and human dimensions. Ruiz-Mercado and Cabezas have brought to this book their experience of researching sustainable process design and life cycle sustainability evaluation to assist with development in government, industry and academia. This book takes a practical, step-by-step approach to designing sustainable plants and processes by starting from chemical engineering fundamentals. This method enables readers to achieve new process design approaches with high influence and less complexity. It will also help to incorporate sustainability at the early stages of project life, and build up multiple systems level perspectives. Ruiz-Mercado and Cabezas' book is the only book on the market that looks at process sustainability from a chemical engineering fundamentals perspective. - Improve plants, processes and products with sustainability in mind; from conceptual design to life cycle assessment - Avoid retro fitting costs by planning for sustainability concerns at the start of the design process - Link sustainability to the chemical engineering fundamentals




Sustainability Engineering


Book Description

This book explores sustainability engineering through the lens of the manufacturing and chemical process industries to elucidate the safe and economic implementation of process designs used to transform raw materials into useful finished products. The author applies the tenets of sustainability science to develop an engineering methodology that supports the perpetual availability of raw materials through recycling/reuse/repurposing, incorporates inexhaustible supplies, such as solar energy and municipal waste, and encompasses the husbandry of these resources in a manner that minimizes negative environmental impacts. Anyone involved in the design or manufacture of chemicals, or the upgrade of existing manufacturing processes, will benefit from this book’s suggestions for identifying improvement options, while adding the pivotal aspect of sustainability to the usual cost and safety equation optimization elements.




Engineering for Sustainable Communities


Book Description

Engineering for Sustainable Communities: Principles and Practices defines and outlines sustainable engineering methods for real-world engineering projects.




Proceedings of the 3rd International Conference on Separation Technology


Book Description

This book contains papers presented in the 3rd International Conference on Separation Technology 2020 (ICoST 2020) held from 15 to 16th August 2020 at Johor, Malaysia. This proceeding contains papers presented by academics and industrial practitioners showcasing the latest advancements and findings in field of separation technology. The papers are categorized under the following tracks and topics of research: Environment Engineering Biotechnology Absorption and Adsorption Technology Wastewater Treatment ICoST 2020 covers multidisciplinary perspectives on separation research and aims to promote scientific information interchange between academics, researchers, graduates and industry professionals worldwide. This conference provides opportunities for the delegates to exchange new ideas and application experiences face to face, to establish business or research relations and to find global partners for future collaboration.




Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications


Book Description

Progress in membrane materials, selective membrane design, and computer modeling and simulation have contributed greatly to the application of advanced membranes in conventional and alternative power sectors, as well as to clean industry applications. This book presents a comprehensive review of membrane science and technology.




Process Intensification


Book Description

Intensified processes have found widespread application in the chemical and petrochemical industries. The use of intensified systems allows for a reduction of operating costs and supports the “greening” of chemical processes. However, the design of intensified equipment requires special methodologies. This book describes the fundamentals and applications of these design methods, making it a valuable resource for use in both industry and academia.




Sustainable Water Engineering


Book Description

Sustainable Water Engineering introduces the latest thinking from academic, stakeholder and practitioner perspectives who address challenges around flooding, water quality issues, water supply, environmental quality and the future for sustainable water engineering. In addition, the book addresses historical legacies, strategies at multiple scales, governance and policy. Offers well-structured content that is strategic in its approach Covers up-to-date issues and examples from both developed and developing nations Include the latest research in the field that is ideal for undergraduates and post-graduate researchers Presents real world applications, showing how engineers, environmental consultancies and international institutions can use the concepts and strategies