SVD and Signal Processing, III


Book Description

Matrix Singular Value Decomposition (SVD) and its application to problems in signal processing is explored in this book. The papers discuss algorithms and implementation architectures for computing the SVD, as well as a variety of applications such as systems and signal modeling and detection.The publication presents a number of keynote papers, highlighting recent developments in the field, namely large scale SVD applications, isospectral matrix flows, Riemannian SVD and consistent signal reconstruction. It also features a translation of a historical paper by Eugenio Beltrami, containing one of the earliest published discussions of the SVD.With contributions sourced from internationally recognised scientists, the book will be of specific interest to all researchers and students involved in the SVD and signal processing field.




SVD and Signal Processing


Book Description

Compiled in this book is a selection of articles written by internationally recognized experts in the fields of matrix computation and signal processing. In almost all digital signal processing (DSR) problems, the available data is corrupted by (measurement) noise or is incomplete. Classical techniques are unable to separate ''signal'' spaces and ''noise'' spaces. However, the information hidden in the data can be made explicit through singular value decomposition (SVD). SVD based signal processing is making headway and will become feasible soon, thanks to the progress in parallel computations and VLSI implementation. The book is divided into six parts. Part one is a tutorial, beginning with an introduction, including (VLSI) parallel algorithms and some intriguing problems. It describes several applications of SVD in system identification and signal detection. It also deals with the fundamental harmonic retrieval problem and principal component analysis. Part two discusses details of model reduction, system identification and detection of multiple sinusoids in white noise, while part three is devoted to the total-least-squares and generalized singular value decomposition problems. The fourth section deals with real-time and adaptive algorithms, the fifth examines fast algorithms and architectures, such as block-algorithms, computational arrays, systolic arrays, hypercubes and connection machines, and the final part addresses some open problems.




Singular Spectrum Analysis for Time Series


Book Description

This book gives an overview of singular spectrum analysis (SSA). SSA is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA is multi-purpose and naturally combines both model-free and parametric techniques, which makes it a very special and attractive methodology for solving a wide range of problems arising in diverse areas. Rapidly increasing number of novel applications of SSA is a consequence of the new fundamental research on SSA and the recent progress in computing and software engineering which made it possible to use SSA for very complicated tasks that were unthinkable twenty years ago. In this book, the methodology of SSA is concisely but at the same time comprehensively explained by two prominent statisticians with huge experience in SSA. The book offers a valuable resource for a very wide readership, including professional statisticians, specialists in signal and image processing, as well as specialists in numerous applied disciplines interested in using statistical methods for time series analysis, forecasting, signal and image processing. The second edition of the book contains many updates and some new material including a thorough discussion on the place of SSA among other methods and new sections on multivariate and multidimensional extensions of SSA.




Wireless Algorithms, Systems, and Applications


Book Description

This book constitutes the refereed proceedings of the 5th Annual International Conference on Wireless Algorithms, Systems, and Applications, WASA 2010, held in Beijing, China, in August 2010. The 19 revised full papers and 10 revised short papers presented together with 18 papers from 4 workshops were carefully reviewed and selected from numerous submissions. The papers are organized in topica sections on topology control and coverage, theoretical foundations, energy-aware algorithms and protocol design, wireless sensor networks and applications, applications and experimentation, scheduling and channel assignment, coding, information theory and security, security of wireless and ad-hoc networks, data management and network control in wireless networks, radar and sonar sensor networks, as well as compressive sensing for communications and networking.




Independent Component Analysis and Signal Separation


Book Description

This book constitutes the refereed proceedings of the 8th International Conference on Independent Component Analysis and Signal Separation, ICA 2009, held in Paraty, Brazil, in March 2009. The 97 revised papers presented were carefully reviewed and selected from 137 submissions. The papers are organized in topical sections on theory, algorithms and architectures, biomedical applications, image processing, speech and audio processing, other applications, as well as a special session on evaluation.




Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms


Book Description

Numerical linear algebra, digital signal processing, and parallel algorithms are three disciplines with a great deal of activity in the last few years. The interaction between them has been growing to a level that merits an Advanced Study Institute dedicated to the three areas together. This volume gives an account of the main results in this interdisciplinary field. The following topics emerged as major themes of the meeting: - Singular value and eigenvalue decompositions, including applications, - Toeplitz matrices, including special algorithms and architectures, - Recursive least squares in linear algebra, digital signal processing and control, - Updating and downdating techniques in linear algebra and signal processing, - Stability and sensitivity analysis of special recursive least squares problems, - Special architectures for linear algebra and signal processing. This book contains tutorials on these topics given by leading scientists in each of the three areas. A consider- able number of new research results are presented in contributed papers. The tutorials and papers will be of value to anyone interested in the three disciplines.







Foundations of Signal Processing


Book Description

This comprehensive and engaging textbook introduces the basic principles and techniques of signal processing, from the fundamental ideas of signals and systems theory to real-world applications. Students are introduced to the powerful foundations of modern signal processing, including the basic geometry of Hilbert space, the mathematics of Fourier transforms, and essentials of sampling, interpolation, approximation and compression The authors discuss real-world issues and hurdles to using these tools, and ways of adapting them to overcome problems of finiteness and localization, the limitations of uncertainty, and computational costs. It includes over 160 homework problems and over 220 worked examples, specifically designed to test and expand students' understanding of the fundamentals of signal processing, and is accompanied by extensive online materials designed to aid learning, including Mathematica® resources and interactive demonstrations.




A Practical Approach to Microarray Data Analysis


Book Description

In the past several years, DNA microarray technology has attracted tremendous interest in both the scientific community and in industry. With its ability to simultaneously measure the activity and interactions of thousands of genes, this modern technology promises unprecedented new insights into mechanisms of living systems. Currently, the primary applications of microarrays include gene discovery, disease diagnosis and prognosis, drug discovery (pharmacogenomics), and toxicological research (toxicogenomics). Typical scientific tasks addressed by microarray experiments include the identification of coexpressed genes, discovery of sample or gene groups with similar expression patterns, identification of genes whose expression patterns are highly differentiating with respect to a set of discerned biological entities (e.g., tumor types), and the study of gene activity patterns under various stress conditions (e.g., chemical treatment). More recently, the discovery, modeling, and simulation of regulatory gene networks, and the mapping of expression data to metabolic pathways and chromosome locations have been added to the list of scientific tasks that are being tackled by microarray technology. Each scientific task corresponds to one or more so-called data analysis tasks. Different types of scientific questions require different sets of data analytical techniques. Broadly speaking, there are two classes of elementary data analysis tasks, predictive modeling and pattern-detection. Predictive modeling tasks are concerned with learning a classification or estimation function, whereas pattern-detection methods screen the available data for interesting, previously unknown regularities or relationships.




Algorithm Collections for Digital Signal Processing Applications Using Matlab


Book Description

The Algorithms such as SVD, Eigen decomposition, Gaussian Mixture Model, HMM etc. are presently scattered in different fields. There remains a need to collect all such algorithms for quick reference. Also there is the need to view such algorithms in application point of view. This book attempts to satisfy the above requirement. The algorithms are made clear using MATLAB programs.