SWI/SNF-nucleosome Interactions and Disassembly of Nucleosomes


Book Description

The SWI/SNF complex disrupts and mobilizes chromatin in an ATP-dependent manner. A site-directed photoaffinity crosslinking approach in which photoreactive moieties attached at specific sites within histone octamer was developed and used to map the interactions of SWI/SNF with the histone octamer face of the nucleosome. The data shows that the presence of adjacent nucleosomes promotes nucleosome eviction and the recruitment of SWI/SNF by Gal4-VP16 to dinucleosomes restricted the nucleosome mobilization in one direction.




The Interplay of Histone Chaperone Nap1 and SWI/SNF Family of Chromatin Remodelers in S. Cerevisiae


Book Description

Histone disassembly is one of the mechanisms by which the ATP dependent chromatin remodelers remodel the nucleosomes. However nucleosome remodeling is also regulated by other factors like covalent modifications marks (methylation, acetylation etc. of both histones and chromatin remodelers). and histone chaperones. All these different players act in concert inside the cell, to modulate the chromatin landscape. Histone chaperones can either act independently and or in concert with chromatin remodelers, for nucleosome disassembly. We have previously shown that SWI/SNF has the ability to mediate disassembly of a dinucleosome substrate in a two step process. The first step in this process is the displacement of one H2A-H2B dimer that occurs rapidly, followed by a slower step in which the remaining hexasome is displaced. SWI/SNF mediated disassembly does not require any free DNA as an acceptor or other factors, but does require an adjoining nucleosome. However, little is known about the mechanism by which chaperones act with remodelers in causing disassembly. In this study, we have investigated the role of histone chaperone Nap1 (N[barbelow]ucleosome A[barbelow]ssembly P[barbelow]rotein1) on the remodeling properties of the yeast remodeler RSC ((R[barbelow]emodels S[barbelow]tructure of C[barbelow]hromatin). We focused on the effects of Nap1 when RSC remodels short nucleosomal arrays and compared these to those with mononucleosomes. We found that Nap1 enhances RSC mediated disassembly of nucleosome only on dinucleosome substrates but not on mononucleosomes. The enhanced disassembly is not due to increased ATP hydrolysis as the rate of ATP hydrolysis by RSC does not increase in the presence of Nap1. Enhanced disassembly is also not due to an increase in rate of nucleosome movement. The effects of Nap1 on RSC are limited to dinucleosome substrate, and does not affect its binding or rate of ATP hydrolysis on a free DNA substrate. To further understand the mechanism of Nap1 action, we scanned various mutants on the surface of Nap1, to find out the region of Nap1 that is important for enhancing dinucleosome disassembly by RSC. We found that the same alpha chain and amino acid residues of Nap1 that binds to histone H2A-H2B dimer in solution, is also critical for interaction with RSC during remodelling of nucleosomes, and favours disassembly. This suggests that Nap1 interacts with nucleosomal H2A-H2B during remodeling by RSC, and hence promotes nucleosome disassembly, which the next step in the remodeling process. We have also seen that this enhancement of disassembly is specific to RSC and Nap1, and does not occur with either SWI/SNF, which is a paralog of RSC in yeast or with histone chaperone Vps75, only other member of NAP family in yeast. On the other hand, Nap1 is overall inhibitory for SWI/SNF. Nap1 reduces the rate of nucleosome movement on both mono and di-nucleosomes, by reducing the rate of ATP hydrolysis. Higher concentration of Nap1 inhibits SWI/SNF binding to free DNA and dinucleosomes. Based on an extensive scan using twenty five Nap1 mutants to identify the , we found that the C-terminal region of Nap1 to be inhibitory to SWI/SNF binding to both DNA and dinucleosome while the H2A-H2B binding to inhibitory for SWI/SNF dinucleosome binding. Therefore Nap1 regulates SWI/SNF and RSC complexes in antagonistic ways. This may help explain the activating and occasional repressive roles of RSC and SWI/SNF on gene transcription, by stimulating nucleosome disassembly by RSC and reducing nucleosome movement by SWI/SNF.




Dynamics of Nucleosome Remodeling by ATP-dependent Chromatin Remodelers


Book Description

Chromatin is highly regulated nucleoprotein complex facilitating the dynamic balance between genome packaging and accessibility. The central workhorses regulating the dynamic nature of chromatin are ATP-dependent chromatin remodelers- ISWI, SWI/SNF, INO80, and CHD/Mi2. All chromatin remodelers transduce the energy from ATP hydrolysis to translocate on DNA, break histone-DNA contacts, and mobilize nucleosomes. However, the final outcomes of nucleosome remodeling are diverse - nucleosome sliding, dimer exchange, nucleosome disassembly, and nucleosome conformation alteration. This study sheds light on how different chromatin remodelers catalyze various structural transformations. We provide novel insights into the nucleosome dynamics, the role of histone octamer dynamics on nucleosome remodeling by ISW2, mechanism of dimer exchange by INO80 and mechanism of nucleosome disassembly by the coordinated action of RSC and histone chaperone Nap1. We also provide insights on how aberrant SWI/SNF complexes affect fundamental enzymatic properties such as ATPase and processive nucleosome remodeling. ISW2 remodelers sense and respond to the length of linker DNA separating the nucleosome and centers nucleosome. Histone octamers are perceived as a mostly static structure whereas DNA deforms itself to fit nucleosome. We have found change in histone octamer conformation as a novel step in ISW2 mobilizing DNA through the nucleosome. We provide evidence for an induced fit mechanism where histone-histone and histone-DNA interactions change in respond to remodeler, and these changes promote DNA entry into the nucleosome. Our data supports a model in which DNA translocation causes the change in histone octamer conformation, followed by DNA entry into nucleosome and resetting of the histone octamer core. We also move a step ahead and show that SANT domain promotes the entry of DNA into nucleosome and resets the histone octamer core allowing processive nucleosome mobilization. INO80 nucleosome remodeling provides two outcomes- nucleosome centering and dimer exchange. INO80 exchanges H2A.Z-H2B dimer for H2A-H2B. We show that INO80 is incredibly slow at centering nucleosome compared to ISW2. We also provide evidence for a mechanism where INO80 persistently displaces DNA from the dimer interface, unlike ISW2, facilitating dimer exchange. In another instance, we show that kinetic step sizes are modulated by a combination of enzyme and DNA sequence properties, and are not hardwired into the enzyme. ISW2 has been previously shown to translocate DNA with a kinetic step sizes of ~7bp and ~3bp. We show that kinetic step sizes may vary depending on nucleosomal location where we monitor DNA movement. Next, we studied the mechanism of nucleosome disassembly by RSC in the presence of Nap1. We found that Nap1 promotes the disassembly of the distal nucleosome that RSC collides with rather than the proximal nucleosomes it mobilizes. SWI/SNF tops the list of the frequently mutated epigenetic factor in cancer with its subunits mutated in more than 20% of all cancers. Loss of hSnf5 is a driver mutation in pediatric rhabdoid tumors. Our lab has previously identified that the deletion of Snf5 causes yeast SWI/SNF to lose an entire module comprised of Snf5, Swp82, and Taf14. In this study, we establish the properties of aberrant SWI/SNF complex formed in the absence of Snf5 module. The deletion resulted in lower ATP hydrolysis and nucleosome mobilization activities of the mutant SWI/SNF. We found that Snf5 module is necessary to couple ATP hydrolysis with DNA translocation. We studied the role of accessory domain AT-hooks in the ATPase subunit of SWI/SNF and found similar results. Interestingly, AT hook and SnAC domains, and Snf5 subunit were found to communicate with the same region in ATPase domain physically. These studies provide valuable mechanistic insights into chromatin structure and function and highlight how different chromatin remodelers catalyze different chromatin remodeling outcomes. We also provide new insights on how the activity of the core ATPase motor is regulated either by accessory domains on the same subunit or by accessory subunits as a part of the larger complex.




The Nucleosome


Book Description

This is the first in a series of volumes concerning the properties of the eukaryotic nucleus. Contributions from several of the most active laboratories are brought together to present a focused overview of a selected aspect of nuclear structure and function.




Fundamentals of Chromatin


Book Description

​​​​​​​​​​​​​While there has been an increasing number of books on various aspects of epigenetics, there has been a gap over the years in books that provide a comprehensive understanding of the fundamentals of chromatin. ​Chromatin is the combination of DNA and proteins that make up the genetic material of chromosomes. Its primary function is to package DNA to fit into the cell, to strengthen the DNA to prevent damage, to allow mitosis and meiosis, and to control the expression of genes and DNA replication. The audience for this book is mainly newly established scientists ​and graduate students. Rather than going into the more specific areas of recent research on chromatin the chapters in this book give a strong, updated groundwork about the topic. Some the fundamentals that this book will cover include the structure of chromatin and biochemistry and the enzyme complexes that manage it.




Chromatin


Book Description

The Third Edition of Chromatin: Structure and Function brings the reader up-to-date with the remarkable progress in chromatin research over the past three years. It has been extensively rewritten to cover new material on chromatin remodeling, histone modification, nuclear compartmentalization, DNA methylation, and transcriptional co-activators and co-repressors. The book is written in a clear and concise fashion, with 60 new illustrations. Chromatin: Structure and Function provides the reader with a concise and coherent account of the nature, structure, and assembly of chromatin and its active involvement in the processes of DNA transcription, replication and repair. This book consistently interrelates the structure of eukaryotic DNA with the nuclear processes it undergoes, and will be essential reading for students and molecular biologists who want to really understand how DNA works. Written in a clear and concise fashion Includes 60 new illustrations Extensively rewritten Brings the reader up-to-date with the remarkable progress in chromatin research over the past three years.




Introduction to Epigenetics


Book Description

This open access textbook leads the reader from basic concepts of chromatin structure and function and RNA mechanisms to the understanding of epigenetics, imprinting, regeneration and reprogramming. The textbook treats epigenetic phenomena in animals, as well as plants. Written by four internationally known experts and senior lecturers in this field, it provides a valuable tool for Master- and PhD- students who need to comprehend the principles of epigenetics, or wish to gain a deeper knowledge in this field. After reading this book, the student will: Have an understanding of the basic toolbox of epigenetic regulation Know how genetic and epigenetic information layers are interconnected Be able to explain complex epigenetic phenomena by understanding the structures and principles of the underlying molecular mechanisms Understand how misregulated epigenetic mechanisms can lead to disease




Brenner's Encyclopedia of Genetics


Book Description

The explosion of the field of genetics over the last decade, with the new technologies that have stimulated research, suggests that a new sort of reference work is needed to keep pace with such a fast-moving and interdisciplinary field. Brenner's Encyclopedia of Genetics, Second Edition, Seven Volume Set, builds on the foundation of the first edition by addressing many of the key subfields of genetics that were just in their infancy when the first edition was published. The currency and accessibility of this foundational content will be unrivalled, making this work useful for scientists and non-scientists alike. Featuring relatively short entries on genetics topics written by experts in that topic, Brenner's Encyclopedia of Genetics, Second Edition, Seven Volume Set provides an effective way to quickly learn about any aspect of genetics, from Abortive Transduction to Zygotes. Adding to its utility, the work provides short entries that briefly define key terms, and a guide to additional reading and relevant websites for further study. Many of the entries include figures to explain difficult concepts. Key terms in related areas such as biochemistry, cell, and molecular biology are also included, and there are entries that describe historical figures in genetics, providing insights into their careers and discoveries. This 7-volume set represents a 25% expansion from the first edition, with over 1600 articles encompassing this burgeoning field Thoroughly up-to-date, with many new topics and subfields covered that were in their infancy or not inexistence at the time of the first edition. Timely coverage of emergent areas such as epigenetics, personalized genomic medicine, pharmacogenetics, and genetic enhancement technologies Interdisciplinary and global in its outlook, as befits the field of genetics Brief articles, written by experts in the field, which not only discuss, define, and explain key elements of the field, but also provide definition of key terms, suggestions for further reading, and biographical sketches of the key people in the history of genetics




Nucleosomes, Histones & Chromatin


Book Description

Covers nucleosomes, histones and chromatin, with chapters on dynamic mapping of histone-DNA interactions in nucleosomes by unzipping single molecules of DNA, Digital DNase technology, and Genome-wide Analysis of Chromatin Transition.




Epigenomics, from Chromatin Biology to Therapeutics


Book Description

Experts from academia, the biotechnology and pharmaceutical industries introduce biological, medical and methodological aspects of the emerging field of epigenomics.