Switch-Mode Power Supplies Spice Simulations and Practical Designs


Book Description

Harness Powerful SPICE Simulation and Design Tools to Develop Cutting-Edge Switch-Mode Power Supplies Switch-Mode Power Supplies: SPICE Simulations and Practical Designs is a comprehensive resource on using SPICE as a power conversion design companion. This book uniquely bridges analysis and market reality to teach the development and marketing of state-of-the art switching converters. Invaluable to both the graduating student and the experienced design engineer, this guide explains how to derive founding equations of the most popular converters...design safe, reliable converters through numerous practical examples...and utilize SPICE simulations to virtually breadboard a converter on the PC before using the soldering iron. Filled with more than 600 illustrations, Switch-Mode Power Supplies: SPICE Simulations and Practical Designs enables you to: Derive founding equations of popular converters Understand and implement loop control via the book-exclusive small-signal models Design safe, reliable converters through practical examples Use SPICE simulations to virtually breadboard a converter on the PC Access design spreadsheets and simulation templates on the accompanying CD-ROM, with numerous examples running on OrCADË, ICAPSË, μCapË, TINAË, and more Inside This Powerful SPICE Simulation and Design Resource • Introduction to Power Conversion • Small-Signal Modeling • Feedback and Control Loops • Basic Blocks and Generic Models • Simulation and Design of Nonisolated Converters • Simulation and Design of Isolated Converters-Front-End Rectification and Power Factor Correction • Simulation and Design of Isolated Converters-The Flyback • Simulation and Design of Isolated Converters-The Forward




Switch-Mode Power Supplies, Second Edition


Book Description

THE LATEST SPICE SIMULATION AND DESIGN TOOLS FOR CREATING STATE-OF-THE-ART SWITCHMODE POWER SUPPLIES Fully updated to incorporate new SPICE features and capabilities, this practical guide explains, step by step, how to simulate, test, and improve switch-mode power supply designs. Detailed formulas with founding equations are included. Based on the author's continued research and in-depth, handson work in the field, this revised resource offers a collection of the latest SPICE solutions to the most difficult problem facing power supply designers: creating smaller, more heat-efficient power supplies in shorter design cycles. NEW to this edition: Complete analysis of rms currents for the three basic cells in CCM and DCM PWM switch at work in the small-signal analysis of the DCM boost and the QR flyback OTA-based compensators Complete transistor-level TL431 model Small-signal analysis of the borderline-operated boost PFC circuit operated in voltage or current mode All-over power phenomena in QR or fixed-frequency discontinuous/continuous flyback converters Small-signal model of a QR flyback converter Small-signal model of the active clamp forward converter operated in voltagemode control Electronic content—design templates and examples available online Switch-Mode Power Supplies: SPICE Simulations and Practical Designs, Second Edition, covers: Small-signal modeling * Feedback and ciontrol loops * Basic blocks and generic switched models * Nonisolated converters * Off-line converters * Flyback converters * Forward converters * Power factor correction




Designing Control Loops for Linear and Switching Power Supplies


Book Description

Loop control is an essential area of electronics engineering that todays professionals need to master. Rather than delving into extensive theory, this practical book focuses on what you really need to know for compensating or stabilizing a given control system. You can turn instantly to practical sections with numerous design examples and ready-made formulas to help you with your projects in the field. You also find coverage of the underpinnings and principles of control loops so you can gain a more complete understanding of the material. This authoritative volume explains how to conduct analysis of control systems and provides extensive details on practical compensators. It helps you measure your system, showing how to verify if a prototype is stable and features enough design margin. Moreover, you learn how to secure high-volume production by bench-verified safety margins.




Switch-mode Power Supply SPICE Cookbook


Book Description

CD-ROM contains: INTUSOFT demo CD version 1.9, OrCAD evaluation software 9.1, MicroCap evaluation 6.1.3, and PSIM demo version 4.1a.




Switch-mode Power Supplies


Book Description




Switch More Power Supply


Book Description

This is a resource on using SPICE as a power conversion design companion. The book bridges analysis and market reality to teach the development and marketing of state-of-the art switching converters. It explains how to derive founding equations of the most popular converters and design safe, reliable converters.




Switching Power Supply Design, 3rd Ed.


Book Description

The World's #1 Guide to Power Supply Design Now Updated! Recognized worldwide as the definitive guide to power supply design for over 25 years, Switching Power Supply Design has been updated to cover the latest innovations in technology, materials, and components. This Third Edition presents the basic principles of the most commonly used topologies, providing you with the essential information required to design cutting-edge power supplies. Using a tutorial, how-and-why approach, this expert resource is filled with design examples, equations, and charts. The Third Edition of Switching Power Supply Design features: Designs for many of the most useful switching power supply topologies The core principles required to solve day-to-day design problems A strong focus on the essential basics of transformer and magnetics design New to this edition: a full chapter on choke design and optimum drive conditions for modern fast IGBTs Get Everything You Need to Design a Complete Switching Power Supply: Fundamental Switching Regulators * Push-Pull and Forward Converter Topologies * Half- and Full-Bridge Converter Topologies * Flyback Converter Topologies * Current-Mode and Current-Fed Topologies * Miscellaneous Topologies * Transformer and Magnetics Design * High-Frequency Choke Design * Optimum Drive Conditions for Bipolar Power Transistors, MOSFETs, Power Transistors, and IGBTs * Drive Circuits for Magnetic Amplifiers * Postregulators * Turn-on, Turn-off Switching Losses and Low Loss Snubbers * Feedback-Loop Stabilization * Resonant Converter Waveforms * Power Factor and Power Factor Correction * High-Frequency Power Sources for Fluorescent Lamps, and Low-Input-Voltage Regulators for Laptop Computers and Portable Equipment




Transfer Functions of Switching Converters


Book Description

Transfer Functions of Switching Converters teaches readers how to determine transfer functions of switching power supplies commonly encountered in consumer and industrial markets. The book starts with a smooth introduction to switching cells, going into the details of the first steps of linearization and small-signal modulation. You will then learn how the PWM switch model was derived and how to apply it to the basic structures operated in fixed switching frequency and various operating conditions like continuous and discontinuous modes in voltage- or current-mode control. The model is extended to other control schemes like quasi-resonance, constant on- and off-time converters, all with an associated small-signal version. The following chapters explore the founding structures like the buck, the boost and buck-boost cells, later covering their isolated versions like forward or flyback converters. The last chapter deals with more complicated structures like Ćuk, Zeta, SEPIC and LLC.




Switch-Mode Power Converters


Book Description

Switch-Mode Power Converters introduces an innovative, highly analytical approach to symbolic, closed-form solutions for switched-mode power converter circuits. This is a highly relevant topic to power electronics students and professionals who are involved in the design and analysis of electrical power converters. The author uses extensive equations to explain how solid-state switches convert electrical voltages from one level to another, so that electronic devices (e.g., audio speakers, CD players, DVD players, etc.) can use different voltages more effectively to perform their various functions. Most existing comparable books published as recently as 2002 do not discuss closed-loop operations, nor do they provide either DC closed-loop regulation equations or AC loop gain (stability) formulae. The author Wu, a leading engineer at Lockheed Martin, fills this gap and provides among the first descriptions of how error amplifiers are designed in conjunction with closed-loop bandwidth selection. BENEFIT TO THE READER: Readers will gain a mathematically rigorous introduction to numerous, closed-form solutions that are readily applicable to the design and development of various switch-mode power converters. Provides symbolic, closed-form solutions for DC and AC studies Provides techniques for expressing close-loop operation Gives readers the ability to perform closed-loop regulation and sensitivity studies Gives readers the ability to design error amplifiers with precision Employs the concept of the continuity of states in matrix form Gives accelerated time-domain, steady-state studies using Laplace transform Gives accelerated time-domain studies using state transition Extensive use of matrix, linear algebra, implicit functions, and Jacobian determinants Enables the determination of power stage gain that otherwise could not be obtained




Introduction to Modern Power Electronics


Book Description

Provides comprehensive coverage of the basic principles and methods of electric power conversion and the latest developments in the field This book constitutes a comprehensive overview of the modern power electronics. Various semiconductor power switches are described, complementary components and systems are presented, and power electronic converters that process power for a variety of applications are explained in detail. This third edition updates all chapters, including new concepts in modern power electronics. New to this edition is extended coverage of matrix converters, multilevel inverters, and applications of the Z-source in cascaded power converters. The book is accompanied by a website hosting an instructor’s manual, a PowerPoint presentation, and a set of PSpice files for simulation of a variety of power electronic converters. Introduction to Modern Power Electronics, Third Edition: Discusses power conversion types: ac-to-dc, ac-to-ac, dc-to-dc, and dc-to-ac Reviews advanced control methods used in today’s power electronic converters Includes an extensive body of examples, exercises, computer assignments, and simulations Introduction to Modern Power Electronics, Third Edition is written for undergraduate and graduate engineering students interested in modern power electronics and renewable energy systems. The book can also serve as a reference tool for practicing electrical and industrial engineers.