Switching Power Supplies A - Z


Book Description

Chapter 1: The Principles of Switching Power Conversion Chapter 2: DC-DC Converter Design and Magnetics Chapter 3: Off-line Converter Design and Magnetics Chapter 4: The Topology FAQ Chapter 5: Optimal Core Selection Chapter 6: Component Ratings, Stresses, Reliability and Life Chapter 7: Optimal Power Components Selection Chapter 8: Conduction and Switching Losses Chapter 9: Discovering New Topologies Chapter 10: Printed Circuit Board Layout Chapter 11: Thermal Management Chapter 12: Feedback Loop Analysis and Stability Chapter 13: Paralleling, Interleaving and Sharing Chapter 14: The Front-End of AC-DC Power Supplies Chapter 15: DM and CM Noise in Switching Power Supplies Chapter 16: Fixing EMI across the Board Chapter 17: Input Capacitor and Stability Chapter 18: The Math behind the Electromagnetic Puzzle Chapter 19: Solved Examples Appendix A.




Switching Power Supplies A - Z


Book Description

Switching Power Supplies A - Z is the most comprehensive study available of the theoretical and practical aspects of controlling and measuring Electromagnetic Interference in switching power supplies, including input filter instability considerations. The new edition is thoroughly revised with six completely new chapters, while the existing EMI chapters are expanded to include many more step-by-step numerical examples and key derivations and EMI mitigation techniques. New topics cover the length and breadth of modern switching power conversion techniques, lucidly explained in simple but thorough terms, now with uniquely detailed "wall-reference charts" providing easy access to even complex topics. Step-by-step and iterative approach for calculating high-frequency losses in forward converter transformers, including Proximity losses based on Dowell's equations Thorough, yet uniquely simple design flow-chart for building DC-DC converters and their magnetic components under typical wide-input supply conditions Step-by-step, solved examples for stabilizing control loops of all three major topologies, using either transconductance or conventional operational amplifiers, and either current-mode or voltage-mode control




Switching Power Supplies A - Z


Book Description

The design of Switching Power Supplies has become one of the most crucial aspects of power electronics, particularly in the explosive market for portable devices. Unfortunately, this seemingly simple mechanism is actually one of the most complex and under-estimated processes in Power Electronics. Switching power conversion involves several engineering disciplines: Semiconductor Physics, Thermal Management, Control Loop theory, Magnetics etc, and all these come into play eventually, in ways hard for non-experts to grasp. This book grows out of decades of the author’s experience designing commercial power supplies. Although his formal education was in physics, he learned the hard way what it took to succeed in designing power supplies for companies like Siemens and National Semiconductor. His passion for power supplies and his empathy for the practicing or aspiring power conversion engineer is evident on every page. * The most comprehensive study available of the theoretical and practical aspects of controlling and measuring Electromagnetic Interference in switching power supplies, including input filter instability considerations. * Step-by-step and iterative approach for calculating high-frequency losses in forward converter transformers, including Proximity losses based on Dowell's equations. * Thorough, yet uniquely simple design flow-chart for building DC-DC converters and their magnetic components under typical wide-input supply conditions * Step-by-step, solved examples for stabilizing control loops of all three major topologies, using either transconductance or conventional operational amplifiers, and either current-mode or voltage-mode control.




Switching Power Supply Design, 3rd Ed.


Book Description

The World's #1 Guide to Power Supply Design Now Updated! Recognized worldwide as the definitive guide to power supply design for over 25 years, Switching Power Supply Design has been updated to cover the latest innovations in technology, materials, and components. This Third Edition presents the basic principles of the most commonly used topologies, providing you with the essential information required to design cutting-edge power supplies. Using a tutorial, how-and-why approach, this expert resource is filled with design examples, equations, and charts. The Third Edition of Switching Power Supply Design features: Designs for many of the most useful switching power supply topologies The core principles required to solve day-to-day design problems A strong focus on the essential basics of transformer and magnetics design New to this edition: a full chapter on choke design and optimum drive conditions for modern fast IGBTs Get Everything You Need to Design a Complete Switching Power Supply: Fundamental Switching Regulators * Push-Pull and Forward Converter Topologies * Half- and Full-Bridge Converter Topologies * Flyback Converter Topologies * Current-Mode and Current-Fed Topologies * Miscellaneous Topologies * Transformer and Magnetics Design * High-Frequency Choke Design * Optimum Drive Conditions for Bipolar Power Transistors, MOSFETs, Power Transistors, and IGBTs * Drive Circuits for Magnetic Amplifiers * Postregulators * Turn-on, Turn-off Switching Losses and Low Loss Snubbers * Feedback-Loop Stabilization * Resonant Converter Waveforms * Power Factor and Power Factor Correction * High-Frequency Power Sources for Fluorescent Lamps, and Low-Input-Voltage Regulators for Laptop Computers and Portable Equipment




Power Sources and Supplies: World Class Designs


Book Description

Newnes has worked with Marty Brown, a leader in the field of power design to select the very best design-specific material from the Newnes portfolio. Marty selected material for its timelessness, its relevance to current power supply design needs, and its real-world approach to design issues. Special attention is given to switching power supplies and their design issues, including component selection, minimization of EMI, toroid selection, and breadboarding of designs. Emphasis is also placed on design strategies for power supplies, including case histories and design examples. This is a book that belongs on the workbench of every power supply designer! *Marty Brown, author and power supply design consultant, has personally selected all content for its relevance and usefulness *Covers best design practices for switching power supplies and power converters *Emphasis is on pragmatic solutions to commonly encountered design problems and tasks




Dynamic Analysis of Switching-Mode DC/DC Converters


Book Description

The most critical part of the modern switching-mode power supply is the regulated dc/dc converter. Its dynamic behavior directly determines or influences four of the important characteristics of the power supply: • Stability of the feedback loop • Rejection of input-voltage ripple and the closely-related transient re sponse to input-voltage perturbation • Output impedance and the closely-related transient response to load perturbation • Compatibility with the input EMI filter Due to the complexity of the operation of the converter, predicting its dynamic behavior has not been easy. Without accurate prediction, and depending only on building the circuit and tinkering with it until the operation is satisfactory, the engineering cost can easily escalate and schedules can be missed. The situation is not much better when the circuit is built in the computer, using a general-purpose circuit-simulation program such as SPICE. (At the end of this book is a form for obtaining information on a computer program especially well suited for dynamic analysis of switching-mode power converters: DYANA, an acronym for "DYnamic ANAlysis. " DYANA is based on the method given in this book. ) The main goal of this book is to help the power-supply designer in the prediction of the dynamic behavior by providing user-friendly analytical tools, concrete results of already-made analyses, tabulated for easy application by the reader, and examples of how to apply the tools provided in the book.




Switching Power Supply Design and Optimization, Second Edition


Book Description

The latest techniques for designing state-of-the-art power supplies, including resonant (LLC) converters Extensively revised throughout, Switching Power Supply Design & Optimization, Second Edition, explains how to design reliable, high-performance switching power supplies for today's cutting-edge electronics. The book covers modern topologies and converters and features new information on designing or selecting bandgap references, transformer design using detailed new design charts for proximity effects, Buck efficiency loss teardown diagrams, active reset techniques, topology morphology, and a meticulous AC-DC front-end design procedure. This updated resource contains design charts and numerical examples for comprehensive feedback loop design, including TL431, plus the world’s first top-down simplified design methodology for wide-input resonant (LLC) converters. A step-by-step comparative design procedure for Forward and Flyback converters is also included in this practical guide. The new edition covers: Voltage references DC-DC converters: topologies to configurations Contemporary converters, composites, and related techniques Discontinuous conduction mode Comprehensive front-end design in AC-DC power conversion Topologies for AC-DC applications Tapped-inductor (autotransformer-based) converters Selecting inductors for DC-DC converters Flyback and Forward converter transformer design Forward and Flyback converters: step-by-step design and comparison PCBs and thermal management Closing the loop: feedback and stability, including TL431 Practical EMI filter design Reset techniques in Flyback and Forward converters Reliability, testing, and safety issues Unraveling and optimizing Buck converter efficiency Introduction to soft-switching and detailed LLC converter design methodology with PSpice simulations Practical circuits, design ideas, and component FAQs




Soft Commutation Isolated DC-DC Converters


Book Description

This book describes the operation and analysis of soft-commutated isolated DC–DC converters used in the design of high efficiency and high power density equipment. It explains the basic principles behind first- and second-order circuits with power switches to enable readers to understand the importance of these converters in high efficiency and high power density power supply design for residential, commercial, industrial and medical use as well as in aerospace equipment. With each chapter featuring a different power converter topology, the book covers the most important resonant converters, including series resonant converters; resonant LLC converters; soft commutation pulse width modulation converters; zero voltage switching; and zero current switching. Each topic is presented with full analysis, a showcase of the power stages of the converters, exercises and their solutions as well as simulation results, which mainly focus on the commutation analysis and output characteristic. This book is a valuable source of information for professionals working in power electronics, power conversion and design of high efficiency and high power density DC–DC converters and switch mode power supplies. The book also serves as a point of reference for engineers responsible for development projects and equipment in companies and research centers and a text for advanced students.




Power Supply Cookbook


Book Description

Power Supply Cookbook, Second Edition provides an easy-to-follow, step-by-step design framework for a wide variety of power supplies. With this book, anyone with a basic knowledge of electronics can create a very complicated power supply design in less than one day. With the common industry design approaches presented in each section, this unique book allows the reader to design linear, switching, and quasi-resonant switching power supplies in an organized fashion. Formerly complicated design topics such as magnetics, feedback loop compensation design, and EMI/RFI control are all described in simple language and design steps. This book also details easy-to-modify design examples that provide the reader with a design template useful for creating a variety of power supplies. This newly revised edition is a practical, "start-to-finish" design reference. It is organized to allow both seasoned and inexperienced engineers to quickly find and apply the information they need. Features of the new edition include updated information on the design of the output stages, selecting the controller IC, and other functions associated with power supplies, such as: switching power supply control, synchronization of the power supply to an external source, input low voltage inhibitors, loss of power signals, output voltage shut-down, major current loops, and paralleling filter capacitors. It also offers coverage of waveshaping techniques, major loss reduction techniques, snubbers, and quasi-resonant converters. Guides engineers through a step-by-step design framework for a wide variety of power supplies, many of which can be designed in less than one day Provides easy-to-understand information about often complicated topics, making power supply design a much more accessible and enjoyable process




Control Design Techniques in Power Electronics Devices


Book Description

This book deals specifically with control theories relevant to the design of control units for switched power electronics devices, for the most part represented by DC–DC converters and supplies, by rectifiers of different kinds and by inverters with varying topologies. The theoretical methods for designing controllers in linear and nonlinear systems are accompanied by multiple case studies and examples showing their application in the emerging field of power electronics.