Symbolic Dynamics and its Applications


Book Description

This volume contains the proceedings of the conference, Symbolic Dynamics and its Applications, held at Yale University in the summer of 1991 in honour of Roy L. Adler on his sixtieth birthday. The conference focused on symbolic dynamics and its applications to other fields, including: ergodic theory, smooth dynamical systems, information theory, automata theory, and statistical mechanics. Featuring a range of contributions from some of the leaders in the field, this volume presents an excellent overview of the subject.




An Introduction to Symbolic Dynamics and Coding


Book Description

Symbolic dynamics is a mature yet rapidly developing area of dynamical systems. It has established strong connections with many areas, including linear algebra, graph theory, probability, group theory, and the theory of computation, as well as data storage, statistical mechanics, and $C^*$-algebras. This Second Edition maintains the introductory character of the original 1995 edition as a general textbook on symbolic dynamics and its applications to coding. It is written at an elementary level and aimed at students, well-established researchers, and experts in mathematics, electrical engineering, and computer science. Topics are carefully developed and motivated with many illustrative examples. There are more than 500 exercises to test the reader's understanding. In addition to a chapter in the First Edition on advanced topics and a comprehensive bibliography, the Second Edition includes a detailed Addendum, with companion bibliography, describing major developments and new research directions since publication of the First Edition.




Symbolic Dynamics and its Applications


Book Description

Symbolic dynamics originated as a tool for analyzing dynamical systems and flows by discretizing space as well as time. The development of information theory gave impetus to the study of symbol sequences as objects in their own right. Today, symbolic dynamics has expanded to encompass multi-dimensional arrays of symbols and has found diverse applications both within and beyond mathematics. This volume is based on the AMS Short Course on Symbolic Dynamics and its Applications. It contains introductory articles on the fundamental ideas of the field and on some of its applications. Topics include the use of symbolic dynamics techniques in coding theory and in complex dynamics, the relation between the theory of multi-dimensional systems and the dynamics of tilings, and strong shift equivalence theory. Contributors to the volume are experts in the field and are clear expositors. The book is suitable for graduate students and research mathematicians interested in symbolic dynamics and its applications.




Symbolic Dynamics and Its Applications


Book Description

Symbolic dynamics originated as a tool for analyzing dynamical systems and flows by discretizing space as well as time. The development of information theory gave impetus to the study of symbol sequences as objects in their own right. Today, symbolic dynamics has expanded to encompass multi-dimensional arrays of symbols and has found diverse applications both within and beyond mathematics. This volume is based on the AMS Short Course on Symbolic Dynamics and its Applications. It some of its applications. Topics include the use of symbolic dynamics techniques in coding theory and in complex dynamics, the relation between the theory of multi-dimensional systems and the dynamics of tilings, and strong and are clear expositors. The book is suitable for graduate students and research mathematicians interested in symbolic dynamics and its applications.




Topics in Symbolic Dynamics and Applications


Book Description

This book is devoted to recent developments in symbolic dynamics, and it comprises eight chapters. The first two are concerned with the study of symbolic sequences of 'low complexity', the following two introduce 'high complexity' systems. The later chapters go on to deal with more specialised topics including ergodic theory, number theory, and one-dimensional dynamics.




Applied Symbolic Dynamics and Chaos


Book Description

Symbolic dynamics is a coarse-grained description of dynamics. It provides a rigorous way to understand the global systematics of periodic and chaotic motion in a system. In the last decade it has been applied to nonlinear systems described by one- and two-dimensional maps as well as by ordinary differential equations. This book will help practitioners in nonlinear science and engineering to master that powerful tool.




Combinatorics, Words and Symbolic Dynamics


Book Description

Surveys trends arising from the applications and interactions between combinatorics, symbolic dynamics and theoretical computer science.




Dynamical Systems


Book Description

Several distinctive aspects make Dynamical Systems unique, including: treating the subject from a mathematical perspective with the proofs of most of the results included providing a careful review of background materials introducing ideas through examples and at a level accessible to a beginning graduate student




Elementary Symbolic Dynamics and Chaos in Dissipative Systems


Book Description

This book is a monograph on chaos in dissipative systems written for those working in the physical sciences. Emphasis is on symbolic description of the dynamics and various characteristics of the attractors, and written from the view-point of practical applications without going into formal mathematical rigour. The author used elementary mathematics and calculus, and relied on physical intuition whenever possible. Substantial attention is paid to numerical techniques in the study of chaos. Part of the book is based on the publications of Chinese researchers, including those of the author's collaborators.




Symbolic Modeling of Multibody Systems


Book Description

Modeling and analysing multibody systems require a comprehensive understanding of the kinematics and dynamics of rigid bodies. In this volume, the relevant fundamental principles are first reviewed in detail and illustrated in conformity with the multibody formalisms that follow. Whatever the kind of system (tree-like structures, closed-loop mechanisms, systems containing flexible beams or involving tire/ground contact, wheel/rail contact, etc), these multibody formalisms have a common feature in the proposed approach, viz, the symbolic generation of most of the ingredients needed to set up the model. The symbolic approach chosen, specially dedicated to multibody systems, affords various advantages: it leads to a simplification of the theoretical formulation of models, a considerable reduction in the size of generated equations and hence in resulting computing time, and also enhanced portability of the multibody models towards other specific environments. Moreover, the generation of multibody models as symbolic toolboxes proves to be an excellent pedagogical medium in teaching mechanics.