Symbolic-Numeric Computation


Book Description

The growing demand of speed, accuracy, and reliability in scientific and engineering computing has been accelerating the merging of symbolic and numeric computations. These two types of computation coexist in mathematics yet are separated in traditional research of mathematical computation. This book presents 27 research articles on the integration and interaction of symbolic and numeric computation.







Scientific Programming


Book Description

This book offers an introduction to computer programming, numerical analysis, and other mathematical ideas that extend the basic topics learned in calculus. It illustrates how mathematicians and scientists write computer programs, covering the general building blocks of programming languages and a description of how these concepts fit together to allow computers to produce the results they do. Topics explored here include binary arithmetic, algorithms for rendering graphics, the smooth interpolation of discrete data, and the numerical approximation of non-elementary integrals. The book uses an open-source computer algebra system called Maxima. Using Maxima, first-time programmers can perform familiar tasks, such as graphing functions or solving equations, and learn the basic structures of programming before moving on to other popular programming languages. The epilogue provides some simple examples of how this process works in practice. The book will particularly appeal to students who have finished their calculus sequence.




Symbolic-Numeric Computation


Book Description

The growing demand of speed, accuracy, and reliability in scientific and engineering computing has been accelerating the merging of symbolic and numeric computations. These two types of computation coexist in mathematics yet are separated in traditional research of mathematical computation. This book presents 27 research articles on the integration and interaction of symbolic and numeric computation.




Symbolic-Numeric Computation


Book Description

The growing demand of speed, accuracy, and reliability in scientific and engineering computing has been accelerating the merging of symbolic and numeric computations. These two types of computation coexist in mathematics yet are separated in traditional research of mathematical computation. This book presents 27 research articles on the integration and interaction of symbolic and numeric computation.




A Numerical Library in C for Scientists and Engineers


Book Description

This extensive library of computer programs-written in C language-allows readers to solve numerical problems in areas of linear algebra, ordinary and partial differential equations, optimization, parameter estimation, and special functions of mathematical physics. The library is based on NUMAL, the program assemblage developed and used at the Centre for Mathematics and Computer Science in Amsterdam, one of the world's leading research centers. The important characteristic of the library is its modular structure. Because it is highly compact, it is well-suited for use on personal computers. The library offers the expert a prodigious collection of procedures for implementing numerical methods. The novice can experiment with the worked examples provided and use the more comprehensive procedures to perform mathematical computations. The library provides a powerful research tool for computer scientists, engineers, and applied mathematicians. Applicable materials can be downloaded from the CRC Press website.




Computational Mathematics in Engineering and Applied Science


Book Description

Computational Mathematics in Engineering and Applied Science provides numerical algorithms and associated software for solving a spectrum of problems in ordinary differential equations (ODEs), differential algebraic equations (DAEs), and partial differential equations (PDEs) that occur in science and engineering. It presents detailed examples, each




Mathematical Geosciences


Book Description

This book showcases powerful new hybrid methods that combine numerical and symbolic algorithms. Hybrid algorithm research is currently one of the most promising directions in the context of geosciences mathematics and computer mathematics in general. One important topic addressed here with a broad range of applications is the solution of multivariate polynomial systems by means of resultants and Groebner bases. But that’s barely the beginning, as the authors proceed to discuss genetic algorithms, integer programming, symbolic regression, parallel computing, and many other topics. The book is strictly goal-oriented, focusing on the solution of fundamental problems in the geosciences, such as positioning and point cloud problems. As such, at no point does it discuss purely theoretical mathematics. "The book delivers hybrid symbolic-numeric solutions, which are a large and growing area at the boundary of mathematics and computer science." Dr. Daniel Li chtbau




Symbolic and Numerical Computation for Artificial Intelligence


Book Description

Over the last decade, there has been considerable progress in investigating methods of symbolic mathematics in many application areas of computer science and artifical intelligence, such as engineering design, solid and geometric modelling, robotics and motion planning, and machine vision. This research has produced few applications within engineering and robotics because of the combinatorial cost of symbolic techniques. Therefore, it is essential to investigate approaches for systematic integration of symbolic with numerical techniques which are efficient for handling the huge amount of data that arises in practical applications, while at the same time maintain a logically consistent solution framework. Symbolic and Numerical Computation for Artificial Intelligence gives an overview of applications in machine vision, robotics and engineering design where there is a need for integrating symbolic and numerical methods. It also illustrates the case for an integrated symbolic and numerical environment to support the needs of these applications. This book will be essential reading for researchers in applied mathematics, symbolic and algebraic manipulation, and applied artificial intell




Numeric Computation and Statistical Data Analysis on the Java Platform


Book Description

Numerical computation, knowledge discovery and statistical data analysis integrated with powerful 2D and 3D graphics for visualization are the key topics of this book. The Python code examples powered by the Java platform can easily be transformed to other programming languages, such as Java, Groovy, Ruby and BeanShell. This book equips the reader with a computational platform which, unlike other statistical programs, is not limited by a single programming language. The author focuses on practical programming aspects and covers a broad range of topics, from basic introduction to the Python language on the Java platform (Jython), to descriptive statistics, symbolic calculations, neural networks, non-linear regression analysis and many other data-mining topics. He discusses how to find regularities in real-world data, how to classify data, and how to process data for knowledge discoveries. The code snippets are so short that they easily fit into single pages. Numeric Computation and Statistical Data Analysis on the Java Platform is a great choice for those who want to learn how statistical data analysis can be done using popular programming languages, who want to integrate data analysis algorithms in full-scale applications, and deploy such calculations on the web pages or computational servers regardless of their operating system. It is an excellent reference for scientific computations to solve real-world problems using a comprehensive stack of open-source Java libraries included in the DataMelt (DMelt) project and will be appreciated by many data-analysis scientists, engineers and students.