Symmetric Banach Manifolds and Jordan C*-Algebras


Book Description

This book links two of the most active research areas in present day mathematics, namely Infinite Dimensional Holomorphy (on Banach spaces) and the theory of Operator Algebras (C*-Algebras and their non-associative generalizations, the Jordan C*-Algebras). It organizes in a systematic way a wealth of recent results which are so far only accessible in research journals and contains additional original contributions. Using Banach Lie groups and Banach Lie algebras, a theory of transformation groups on infinite dimensional manifolds is presented which covers many important examples such as Grassmann manifolds and the unit balls of operator algebras. The theory also has potential importance for mathematical physics by providing foundations for the construction of infinite dimensional curved phase spaces in quantum field theory.




Jordan Triple Systems in Complex and Functional Analysis


Book Description

This book is a systematic account of the impressive developments in the theory of symmetric manifolds achieved over the past 50 years. It contains detailed and friendly, but rigorous, proofs of the key results in the theory. Milestones are the study of the group of holomomorphic automorphisms of bounded domains in a complex Banach space (Vigué and Upmeier in the late 1970s), Kaup's theorem on the equivalence of the categories of symmetric Banach manifolds and that of hermitian Jordan triple systems, and the culminating point in the process: the Riemann mapping theorem for complex Banach spaces (Kaup, 1982). This led to the introduction of wide classes of Banach spaces known as JB∗-triples and JBW∗-triples whose geometry has been thoroughly studied by several outstanding mathematicians in the late 1980s. The book presents a good example of fruitful interaction between different branches of mathematics, making it attractive for mathematicians interested in various fields such as algebra, differential geometry and, of course, complex and functional analysis.




Toeplitz Operators and Index Theory in Several Complex Variables


Book Description

4. 1 Bergman-Toeplitz Operators Over Bounded Domains 242 4. 2 Hardy-Toeplitz Operators Over Strictly Domains Pseudoconvex 250 Groupoid C* -Algebras 4. 3 256 4. 4 Hardy-Toeplitz Operators Over Tubular Domains 267 4. 5 Bergman-Toeplitz Operators Over Tubular Domains 278 4. 6 Hardy-Toeplitz Operators Over Polycircular Domains 284 4. 7 Bergman-Toeplitz Operators Over Polycircular Domains 290 4. 8 Hopf C* -Algebras 299 4. 9 Actions and Coactions on C* -Algebras 310 4. 10 Hardy-Toeplitz Operators Over K-circular Domains 316 4. 11 Hardy-Toeplitz Operators Over Symmetric Domains 325 4. 12 Bergman-Toeplitz Operators Over Symmetric Domains 361 5. Index Theory for Multivariable Toeplitz Operators 5. 0 Introduction 371 5. 1 K-Theory for Topological Spaces 372 5. 2 Index Theory for Strictly Pseudoconvex Domains 384 5. 3 C*-Algebras K-Theory for 394 5. 4 Index Theory for Symmetric Domains 400 5. 5 Index Theory for Tubular Domains 432 5. 6 Index Theory for Polycircular Domains 455 References 462 Index of Symbols and Notations 471 In trod uction Toeplitz operators on the classical Hardy space (on the I-torus) and the closely related Wiener-Hopf operators (on the half-line) form a central part of operator theory, with many applications e. g. , to function theory on the unit disk and to the theory of integral equations.




Bounded Symmetric Domains In Banach Spaces


Book Description

This timely book exposes succinctly recent advances in the geometric and analytic theory of bounded symmetric domains. A unique feature is the unified treatment of both finite and infinite dimensional symmetric domains, using Jordan theory in tandem with Lie theory. The highlights include a generalized Riemann mapping theorem, which realizes a bounded symmetric domain as the open unit ball of a complex Banach space with a Jordan structure. Far-reaching applications of this realization in complex geometry and function theory are discussed.This monograph is intended as a convenient reference for researchers and graduate students in geometric analysis, infinite dimensional holomorphy as well as functional analysis and operator theory.




Algebra and Applications 1


Book Description

This book is part of Algebra and Geometry, a subject within the SCIENCES collection published by ISTE and Wiley, and the first of three volumes specifically focusing on algebra and its applications. Algebra and Applications 1 centers on non-associative algebras and includes an introduction to derived categories. The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Jordan superalgebras, Lie algebras, composition algebras, graded division algebras, non-associative C*- algebras, H*-algebras, Krichever-Novikov type algebras, preLie algebras and related structures, geometric structures on 3-Lie algebras and derived categories are all explored. Algebra and Applications 1 is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.




Non-Associative Normed Algebras: Volume 1, The Vidav–Palmer and Gelfand–Naimark Theorems


Book Description

This first systematic account of the basic theory of normed algebras, without assuming associativity, includes many new and unpublished results and is sure to become a central resource for researchers and graduate students in the field. This first volume focuses on the non-associative generalizations of (associative) C*-algebras provided by the so-called non-associative Gelfand–Naimark and Vidav–Palmer theorems, which give rise to alternative C*-algebras and non-commutative JB*-algebras, respectively. The relationship between non-commutative JB*-algebras and JB*-triples is also fully discussed. The second volume covers Zel'manov's celebrated work in Jordan theory to derive classification theorems for non-commutative JB*-algebras and JB*-triples, as well as other topics. The book interweaves pure algebra, geometry of normed spaces, and complex analysis, and includes a wealth of historical comments, background material, examples and exercises. The authors also provide an extensive bibliography.




Studies on Composition Operators


Book Description

This book reflects the proceedings of the 1996 Rocky Mountain Mathematics Consortium conference on "Composition Operators on Spaces of Analytic Functions" held at the University of Wyoming. The readers will find here a collection of high-quality research and expository articles on composition operators in one and several variables. The book highlights open questions and new advances in the classical areas and promotes topics which are left largely untreated in the existing texts. In the past two decades, the study of composition operators has experienced tremendous growth. Many connections between the study of these operators on various function spaces and other branches of analysis have been established. Advances in establishing criteria for membership in different operator classes have led to progress in the study of the spectra, adjoints, and iterates of these operators. More recently, connections between these operators and the study of the invariant subspace problem, functional equations, and dynamical systems have been exploited.




Smooth Homogeneous Structures in Operator Theory


Book Description

Geometric ideas and techniques play an important role in operator theory and the theory of operator algebras. Smooth Homogeneous Structures in Operator Theory builds the background needed to understand this circle of ideas and reports on recent developments in this fruitful field of research. Requiring only a moderate familiarity with funct




Non-Associative Normed Algebras


Book Description

The first systematic account of the basic theory of normed algebras, without assuming associativity. Sure to become a central resource.




Non-Associative Normed Algebras : Volume 2, Representation Theory and the Zel'manov Approach


Book Description

This first systematic account of the basic theory of normed algebras, without assuming associativity, includes many new and unpublished results and is sure to become a central resource for researchers and graduate students in the field. This second volume revisits JB*-triples, covers Zel'manov's celebrated work in Jordan theory, proves the unit-free variant of the Vidav–Palmer theorem, and develops the representation theory of alternative C*-algebras and non-commutative JB*-algebras. This completes the work begun in the first volume, which introduced these algebras and discussed the so-called non-associative Gelfand–Naimark and Vidav–Palmer theorems. This book interweaves pure algebra, geometry of normed spaces, and infinite-dimensional complex analysis. Novel proofs are presented in complete detail at a level accessible to graduate students. The book contains a wealth of historical comments, background material, examples, and an extensive bibliography.