Symmetry And Perturbation Theory - Proceedings Of The International Conference On Spt2004


Book Description

This proceedings volume is a collection of papers presented at the International Conference on SPT2004 focusing on symmetry, perturbation theory, and integrability.The book provides an updated overview of the recent developments in the various different fields of nonlinear dynamics, covering both theory and applications. Special emphasis is given to algebraic and geometric integrability, solutions to the N-body problem of the “choreography” type, geometry and symmetry of dynamical systems, integrable evolution equations, various different perturbation theories, and bifurcation analysis.The contributors to this volume include some of the leading scientists in the field, among them: I Anderson, D Bambusi, S Benenti, S Bolotin, M Fels, W Y Hsiang, V Matveev, A V Mikhailov, P J Olver, G Pucacco, G Sartori, M A Teixeira, S Terracini, F Verhulst and I Yehorchenko.




Symmetry And Perturbation Theory - Proceedings Of The International Conference On Spt2007


Book Description

This proceedings volume is devoted to the interplay of symmetry and perturbation theory, as well as to cognate fields such as integrable systems, normal forms, n-body dynamics and choreographies, geometry and symmetry of differential equations, and finite and infinite dimensional dynamical systems. The papers collected here provide an up-to-date overview of the research in the field, and have many leading scientists in the field among their authors, including: D Alekseevsky, S Benenti, H Broer, A Degasperis, M E Fels, T Gramchev, H Hanssmann, J Krashil'shchik, B Kruglikov, D Krupka, O Krupkova, S Lombardo, P Morando, O Morozov, N N Nekhoroshev, F Oliveri, P J Olver, J A Sanders, M A Teixeira, S Terracini, F Verhulst, P Winternitz, B Zhilinskii.




Symmetry and Perturbation Theory


Book Description

This proceedings volume is devoted to the interplay of symmetry and perturbation theory, as well as to cognate fields such as integrable systems, normal forms, n-body dynamics and choreographies, geometry and symmetry of differential equations, and finite and infinite dimensional dynamical systems. The papers collected here provide an up-to-date overview of the research in the field, and have many leading scientists in the field among their authors, including: D Alekseevsky, S Benenti, H Broer, A Degasperis, M E Fels, T Gramchev, H Hanssmann, J Krashil''shchik, B Kruglikov, D Krupka, O Krupkova, S Lombardo, P Morando, O Morozov, N N Nekhoroshev, F Oliveri, P J Olver, J A Sanders, M A Teixeira, S Terracini, F Verhulst, P Winternitz, B Zhilinskii. Sample Chapter(s). Foreword (101 KB). Chapter 1: Homogeneous Bi-Lagrangian Manifolds and Invariant Monge-Ampere Equations (415 KB). Contents: On Darboux Integrability (I M Anderson et al.); Computing Curvature without Christoffel Symbols (S Benenti); Natural Variational Principles (D Krupka); Fuzzy Fractional Monodromy (N N Nekhoroshev); Emergence of Slow Manifolds in Nonlinear Wave Equations (F Verhulst); Complete Symmetry Groups and Lie Remarkability (K Andriopoulos); Geodesically Equivalent Flat Bi-Cofactor Systems (K Marciniak); On the Dihedral N-Body Problem (A Portaluri); Towards Global Classifications: A Diophantine Approach (P van der Kamp); and other papers. Readership: Researchers and students (graduate/advanced undergraduates) in mathematics, applied mathematics, physics and nonlinear science.




Mathematical Reviews


Book Description




Symmetry and Perturbation Theory


Book Description

This is the fourth conference on OC Supersymmetry and Perturbation TheoryOCO (SPT 2002). The proceedings present original results and state-of-the-art reviews on topics related to symmetry, integrability and perturbation theory, etc. Contents: An Outline of the Geometrical Theory of the Separation of Variables in the Hamilton-Jacobi and SchrAdinger Equations (S Benenti); Partial Symmetries and Symmetric Sets of Solutions to PDE's (G Cicogna); On the Algebro-Geometric Solution of 3 x 3 Matrix Riemann-Hilbert Problem (V Enolski & T Grava); Bifurcations in Flow-Induced Vibration (S Fatimah & F Verhulst); Steklov-Lyapunov Type Systems (Yu N Fedorov); Renormalization Group and Summation of Divergent Series for Hyperbolic Invariant Tori (G Gentile); On the Linearization of Holomorphic Vector Fields in the Siegel Domain with Linear Parts Having Nontrivial Jordan Blocks (T Gramchev); Smooth Normalization of a Vector Field Near an Invariant Manifold (A Kopanskii); Inverse Problems for SL (2) Lattices (V B Kuznetsov); Some Remarks about the Geometry of Hamiltonian Conservation Laws (J-P Ortega); Janet's Algorithm (W Plesken); Some Integrable Billiards (E Previato); Symmetries of Relative Equilibria for Simple Mechanical Systems (M Rodr guez-Olmos & M E Sousa Dias); A Spectral Sequences Approach to Normal Forms (J A Sanders); Rational Parametrization of Strata in Orbit Spaces of Compact Linear Groups (G Sartori & G Valente); Effective Hamiltonians and Perturbation Theory for Quantum Bound States of Nuclear Motion in Molecules (V G Tyuterev); Generalized Hasimoto Transformation and Vector Sine-Gordon Equation (J P Wang); and other papers. Readership: Researchers and graduate students in mathematical and theoretical physics, and nonlinear science."




1089 and All that


Book Description

This excellent book, written by the established author David Acheson, makes mathematics accessible to everyone. Providing an entertaining and witty overview of the subject, the text includes several fascinating puzzles, and is accompanied by numerous illustrations and sketches by world famouscartoonists. This unusual book is one of the most readable explanations of mathematics available.




Nonlinear Symmetries and Nonlinear Equations


Book Description

The study of (nonlinear) dift"erential equations was S. Lie's motivation when he created what is now known as Lie groups and Lie algebras; nevertheless, although Lie group and algebra theory flourished and was applied to a number of dift"erent physical situations -up to the point that a lot, if not most, of current fun damental elementary particles physics is actually (physical interpretation of) group theory -the application of symmetry methods to dift"erential equations remained a sleeping beauty for many, many years. The main reason for this lies probably in a fact that is quite clear to any beginner in the field. Namely, the formidable comple:rity ofthe (algebraic, not numerical!) computations involved in Lie method. I think this does not account completely for this oblivion: in other fields of Physics very hard analytical computations have been worked through; anyway, one easily understands that systems of dOlens of coupled PDEs do not seem very attractive, nor a very practical computational tool.




The Stability of Matter: From Atoms to Stars


Book Description

The first edition of "The Stability of Matter: From Atoms to Stars" was sold out after a time unusually short for a selecta collection and we thought it ap propriate not just to make a reprinting but to include eight new contributionso They demonstrate that this field is still lively and keeps revealing unexpected featureso Of course, we restricted ourselves to developments in which Elliott Lieb participated and thus the heroic struggle in Thomas-Fermi theory where 7 3 5 3 the accuracy has been pushed from Z 1 to Z 1 is not includedo A rich landscape opened up after Jakob Yngvason's observation that atoms in magnetic fields also are described in suitable limits by a Thomas-Fermi-type theoryo Together with Elliott Lieb and Jan Philip Solovej it was eventually worked out that one has to distinguish 5 regionso If one takes as a dimensionless measure of the magnetic field strength B the ratio Larmor radius/Bohr radius one can compare it with N "' Z and for each of the domains 4 3 (i) B « N 1 , 4 3 (ii) B "' N 1 , 4 3 3 (iii) N 1« B « N , 3 (iv) B "' N , 3 (v) B » N a different version ofmagnetic Thomas-Fermi theory becomes exact in the limit N --+ ooo In two dimensions and a confining potential ("quantum dots") the situation is somewhat simpler, one has to distinguish only (i) B « N, (ii) B "'N,




Discrete Mathematics


Book Description

Discrete mathematics is a compulsory subject for undergraduate computer scientists. This new edition includes new chapters on statements and proof, logical framework, natural numbers and the integers and updated exercises from the previous edition.




Applications of Lie Groups to Differential Equations


Book Description

This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.