Symmetry in Classical and Fuzzy Algebraic Hypercompositional Structures


Book Description

This book is a collection of 12 innovative research papers in the field of hypercompositional algebra, 7 of them being more theoretically oriented, with the other 5 presenting strong applicative aspects in engineering, control theory, artificial intelligence, and graph theory. Hypercompositional algebra is now a well-established branch of abstract algebra dealing with structures endowed with multi-valued operations, also called hyperoperations, having a set as the result of the interrelation between two elements of the support set. The theoretical papers in this book are principally related to three main topics: (semi)hypergroups, hyperfields, and BCK-algebra. Heidari and Cristea present a natural generalization of breakable semigroups, defining the breakable semihypergroups where every non-empty subset is a subsemihypergroup. Using the fundamental relation β on a hypergroup, some new properties of the β-classes are obtained by De Salvo et al., who introduced and investigated the notion of height of a β-class. Based on the properties of a cyclic hypergroup of particular matrices, Krehlik and Vyroubalova describe the symmetry of lower and upper approximations in certain rough sets connected with this hypergroup. These results suggest an application to the study of detection sensors. In the framework of hyperrings and hyperfields theory, a new line of research has been developed regarding hyperhomographies on Krasner hyperfields, with interesting applications in cryptography (Vahedi et al.) and new fuzzy weak hyperideals were defined in Hv-rings by using the concept of fuzzy multiset (Al Tahan et al.), for which some algebraic properties were obtained. Two articles are dedicated to the study of BCK-algebras. Bordbar et al. present the properties of the relative annihilator in lower BCK-semilattices, whereas several types of intuitionistic fuzzy soft ideals in hyper BCK-algebras were defined and studied by Xin et al. Increasing numbers of researchers are interested in the applicative aspects of algebraic hypercompositional structures. For example, new properties related with symmetric relations are emphasized by Chvalina and Smetana for the structures and hyperstructures of artificial neurons. Novak et al. present a mathematical model based on elements of algebraic hyperstructure theory, used in the context of underwater wireless sensor networks. A construction of granular structures using m-polar fuzzy hypergraphs and level hypergraphs is illustrated in Luqman et al. using examples from a real-life problem. In the last paper in this book, Akram et al. discuss some properties related to edge regularity for q-rung picture fuzzy graphs.




Krasner Hyperring Theory


Book Description

The theory of algebraic hyperstructures, in particular the theory of Krasner hyperrings, has seen a spectacular development in the last 20 years, which is why a book dedicated to the study of these is so vital. Krasner hyperrings are a generalization of hyperfields, introduced by Krasner in order to study complete valued fields. A Krasner hyperring (R, +, .) is an algebraic structure, where (R, +) is a canonical hypergroup, (R, .) is a semigroup having zero as a bilaterally absorbing element and the multiplication is distributive with respect to the hyperoperation +.Krasner Hyperring Theory presents an elaborate study on hyperstructures, particularly Krasner hyperrings, across 10 chapters with extensive examples. It contains the results of the authors, but also of other researchers in the field, focusing especially on recent research. This book is especially addressed to doctoral students or researchers in the field, as well as to all those interested in this interesting part of algebra, with applications in other fields.




Hypergroup Theory


Book Description

The book presents an updated study of hypergroups, being structured on 12 chapters in starting with the presentation of the basic notions in the domain: semihypergroups, hypergroups, classes of subhypergroups, types of homomorphisms, but also key notions: canonical hypergroups, join spaces and complete hypergroups. A detailed study is dedicated to the connections between hypergroups and binary relations, starting from connections established by Rosenberg and Corsini. Various types of binary relations are highlighted, in particular equivalence relations and the corresponding quotient structures, which enjoy certain properties: commutativity, cyclicity, solvability.A special attention is paid to the fundamental beta relationship, which leads to a group quotient structure. In the finite case, the number of non-isomorphic Rosenberg hypergroups of small orders is mentioned. Also, the study of hypergroups associated with relations is extended to the case of hypergroups associated to n-ary relations. Then follows an applied excursion of hypergroups in important chapters in mathematics: lattices, Pawlak approximation, hypergraphs, topology, with various properties, characterizations, varied and interesting examples. The bibliography presented is an updated one in the field, followed by an index of the notions presented in the book, useful in its study.




Mathematical Reviews


Book Description




Fuzzy Algebraic Hyperstructures


Book Description

This book is intended as an introduction to fuzzy algebraic hyperstructures. As the first in its genre, it includes a number of topics, most of which reflect the authors’ past research and thus provides a starting point for future research directions. The book is organized in five chapters. The first chapter introduces readers to the basic notions of algebraic structures and hyperstructures. The second covers fuzzy sets, fuzzy groups and fuzzy polygroups. The following two chapters are concerned with the theory of fuzzy Hv-structures: while the third chapter presents the concept of fuzzy Hv-subgroup of Hv-groups, the fourth covers the theory of fuzzy Hv-ideals of Hv-rings. The final chapter discusses several connections between hypergroups and fuzzy sets, and includes a study on the association between hypergroupoids and fuzzy sets endowed with two membership functions. In addition to providing a reference guide to researchers, the book is also intended as textbook for undergraduate and graduate students.




Discrete Mathematics and Symmetry


Book Description

Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group.




BCK-algebras


Book Description




Integral Transforms and Their Applications


Book Description

This book is intended to serve as introductory and reference material for the application of integral transforms to a range of common mathematical problems. It has its im mediate origin in lecture notes prepared for senior level courses at the Australian National University, although I owe a great deal to my colleague Barry Ninham, a matter to which I refer below. In preparing the notes for publication as a book, I have added a considerable amount of material ad- tional to the lecture notes, with the intention of making the book more useful, particularly to the graduate student - volved in the solution of mathematical problems in the physi cal, chemical, engineering and related sciences. Any book is necessarily a statement of the author's viewpoint, and involves a number of compromises. My prime consideration has been to produce a work whose scope is selective rather than encyclopedic; consequently there are many facets of the subject which have been omitted--in not a few cases after a preliminary draft was written--because I v believe that their inclusion would make the book too long.







Applications of Hyperstructure Theory


Book Description

This book presents some of the numerous applications of hyperstructures, especially those that were found and studied in the last fifteen years. There are applications to the following subjects: 1) geometry; 2) hypergraphs; 3) binary relations; 4) lattices; 5) fuzzy sets and rough sets; 6) automata; 7) cryptography; 8) median algebras, relation algebras; 9) combinatorics; 10) codes; 11) artificial intelligence; 12) probabilities. Audience: Graduate students and researchers.