Synchrotron Techniques in Interfacial Electrochemistry


Book Description

Proceedings of the NATO Advanced Research Workshop, Funchal, Madeira, Portugal, December 14--18, 1992







Interfacial Electrochemistry


Book Description

This text probes topics and reviews progress in interfacial electrochemistry. It supplies chapter abstracts to give readers a concise overview of individual subjects and there are more than 1500 drawings, photographs, micrographs, tables and equations. The 118 contributors are international scholars who present theory, experimentation and applications.




Nanoscale Probes of the Solid/Liquid Interface


Book Description

Nanoscale Probes of the Solid--Liquid Interface deals with the use of the scanning tunnelling microscope (STM) and related instrumentation to examine the phenomena occurring at the interface between solid and liquid. Scanning probe microscopy (the collective term for such instruments as the STM, the atomic force microscope and related instrumentation) allows detailed, real space atomic or lattice scale insight into surface structures, information which is ideally correlated with surface reactivity. The use of SPM methods is not restricted to ultrahigh vacuum: the STM and AFM have been used on samples immersed in solution or in ambient air, thus permitting a study of environmental effects on surfaces. At the solid--liquid interface the reactivity derives precisely from the presence of the solution and, in many cases, the application of an external potential. Topics covered in the present volume include: the advantages of studying the solid--liquid interface and the obtaining of additional information from probe measurements; interrelationships between probe tip, the interface and the tunnelling process; STM measurements on semiconductor surfaces; the scanning electrochemical microscope, AFM and the solid--liquid interface; surface X-ray scattering; cluster formation on graphite electrodes; Cu deposition on Au surfaces; macroscopic events following Cu deposition; deposition of small metallic clusters on carbon; overpotential deposition of metals; underpotential deposition; STM on nanoscale ceramic superlattices; reconstruction events on Au(ijk) surfaces; Au surface reconstructions; friction force measurements on graphite steps under potential control; and the biocompatibility of materials.




Physical Electrochemistry


Book Description

This volume details the basic principles of interfacial electrochemistry and heterogenous electron transfer processes. It presents topics of current interest in electrochemistry, considering the application of electrochemical techniques in a variety of disciplines, and nonelectrochemical methodologies in electrochemistry.;The work is intended for: electrochemists; analytical, physical, industrial and organic chemists; surface and materials scientists; materials and chemical engineers; physicists; and upper-level undergraduate and graduate students in these disciplines.




Encyclopedia of Chemical Physics and Physical Chemistry


Book Description

The Encyclopedia of Physical Chemistry and Chemical Physics introduces possibly unfamiliar areas, explains important experimental and computational techniques, and describes modern endeavors. The encyclopedia quickly provides the basics, defines the scope of each subdiscipline, and indicates where to go for a more complete and detailed explanation. Particular attention has been paid to symbols and abbreviations to make this a user-friendly encyclopedia. Care has been taken to ensure that the reading level is suitable for the trained chemist or physicist. The encyclopedia is divided in three major sections: FUNDAMENTALS: the mechanics of atoms and molecules and their interactions, the macroscopic and statistical description of systems at equilibrium, and the basic ways of treating reacting systems. The contributions in this section assume a somewhat less sophisticated audience than the two subsequent sections. At least a portion of each article inevitably covers material that might also be found in a modern, undergraduate physical chemistry text. METHODS: the instrumentation and fundamental theory employed in the major spectroscopic techniques, the experimental means for characterizing materials, the instrumentation and basic theory employed in the study of chemical kinetics, and the computational techniques used to predict the static and dynamic properties of materials. APPLICATIONS: specific topics of current interest and intensive research. For the practicing physicist or chemist, this encyclopedia is the place to start when confronted with a new problem or when the techniques of an unfamiliar area might be exploited. For a graduate student in chemistry or physics, the encyclopedia gives a synopsis of the basics and an overview of the range of activities in which physical principles are applied to chemical problems. It will lead any of these groups to the salient points of a new field as rapidly as possible and gives pointers as to where to read about the topic in more detail.




Spectroscopic and Diffraction Techniques in Interfacial Electrochemistry


Book Description

Electrochemistry is one of the oldest branches of Physical Chemistry. Having its foundations in the work of Faraday, Arrhenius and others, it evolved from the study of transport in electrolyte solutions to that of electrode kinetics. Kinetic methods are inherently unable to identify unequivocally the species involved in a reaction. Therefore, beginning in the 70s many spectroscopic and diffraction techniques were applied to the study of the electrode-electrolyte interface, in order to identify intermediary reaction species, and even the spatial arrangement of atoms or molecules at the interface. In order to disseminate these techniques, a NATO Advanced Sutdy Institute was held at Puerto de la Cruz, Tenerife (Canary Islands, Spain) from July 2 to 15, 1988. The Institute consisted of tutorial type lecutures, poster sessions, and round-table discussions. It was attended by over 65 participants from NATO-member countries, and others from Argentina and Japan. In the present volume most of the lectures presented at the Institute have been collected. At least one chapter is devoted to each technique. Emphasis has been made on case studies, rather than theory, which can be found in textbooks and other publications. Our purpose in this book is to help the electrochemists uninitiated in spectroscopic methods to decide which techniques would be suitable for application to their particular problems. We thank all the lecturers who contributed to this volume, and even those UHPs (Unrepentant Habitual Procrastinators) who did not in spite of our urgings to do so.




Solid-Liquid Interfaces


Book Description

Using combinations of in situ and ex situ experimental methods, fundamental and relevant phenomena such as adsorption and desorption of ions and molecules, restructuring of surfaces, thin film and nanocluster growth, and electrochemical reactions on the micrometer scale are addressed. The overview includes a wide range of experimental techniques and examples of solid-liquid interfaces and aims at stimulating an expansion of this important type of interface science.







Nanophysics for Energy Efficiency


Book Description

This book provides a succinct account of the ways in which nano technology is being applied to improve energy efficiency. The coverage includes current scanning probe techniques for electrical energy storage, energy harvesting systems and local electrochemistry as well as emerging techniques of relevance to diverse materials and devices, including advanced scanning probes for nano fabrication and nano tribology. The tools of nanotechnology, such as scanning probe microscopes and micro machines, can provide important information about the fundamental nature of space, especially the zero-point electromagnetic field. An exciting aspect of this subject is that a better understanding of the force that arises from the zero-point field, i.e., the Casimir force, may enable its control to some extent, impacting on the development of nano electromechanical systems. Readers will find this book to be a clear and concise summary of the state of the art in nanophysics and nanotechnology as they relate to energy efficiency.