Synergetics and Dynamic Instabilities


Book Description

This collection of papers presented at the Enrico Fermi School considers the subject of synergetics as a firmly established field of interdisciplinary research, ranging from physics, chemistry and biology, to subjects like economy and sociology. These proceedings focus on the natural sciences.




Synergetics


Book Description

This volume contains most of the invited papers presented at the International Work shop on Synergetics, Schloss E1mau, Bavaria, May 2 to.May 7, 1977. This workshop fol lowed an International Symposium on SynergetiGS at Schloss E1mau, 1972, and an Inter national SUl11l1erschoo1 at Erice, Sicily, 1974. Synergetics is a rather new field of interdisciplinary research which studies the self-organized behavior of systems leading to the formation of structures and func tionings. Indeed the whole universe seems to be organized, with pronounced structures starting from spiral galaxies down to living cells. Furthermore, very many of the most interesting phenomena occur in systems which are far from thermal equilibrium. Synergetics in its present form focusses its attention on those phenomena where dra matic changes occur on a macroscopic scale. Here indeed Synergetics was able to re veal profound analogies between systems in different disciplines ranging from physics to sociology. This volume contains contributions from various fields but the reader will easily discover their cOl11J1on goal. Not only in the natural sciences but also in ecology, sociology, and economy, man is confronted with the problems of complex sys tems. The principles and analogies unearthed by Synergetics will certainly be very he1pfu~ to cope with such difficult problems. I use this opportunity to thank the Vo1kswagenwerk Foundation for its support of the project Synergetics and in particular for sponsoring the International Workshop on Synergetics.




Advanced Synergetics


Book Description

This text on the interdisciplinary field of synergetics will be of interest to students and scientists in physics, chemistry, mathematics, biology, electrical, civil and mechanical engineering, and other fields. It continues the outline of basic con cepts and methods presented in my book Synergetics. An Introduction, which has by now appeared in English, Russian, J apanese, Chinese, and German. I have written the present book in such a way that most of it can be read in dependently of my previous book, though occasionally some knowledge of that book might be useful. But why do these books address such a wide audience? Why are instabilities such a common feature, and what do devices and self-organizing systems have in common? Self-organizing systems acquire their structures or functions without specific interference from outside. The differentiation of cells in biology, and the process of evolution are both examples of self-organization. Devices such as the electronic oscillators used in radio transmitters, on the other hand, are man made. But we often forget that in many cases devices function by means of pro cesses which are also based on self-organization. In an electronic oscillator the motion of electrons becomes coherent without any coherent driving force from the outside; the device is constructed in such a way as to permit specific collective motions of the electrons. Quite evidently the dividing line between self-organiz ing systems and man-made devices is not at all rigid.




Instabilities and Chaos in Quantum Optics


Book Description

Of the variety of nonlinear dynamical systems that exhibit deterministic chaos optical systems both lasers and passive devices provide nearly ideal systems for quantitative investigation due to their simplicity both in construction and in the mathematics that describes them. In view of their growing technical application the understanding, control and possible exploitation of sources of instability in these systems has considerable practical importance. The aim of this volume is to provide a comprehensive coverage of the current understanding of optical instabilities through a series of reviews by leading researchers in the field. The book comprises nine chapters, five on active (laser) systems and four on passive optically bistable systems. Instabilities and chaos in single- (and multi-) mode lasers with homogeneously and broadened gain media are presented and the influence of an injected signal, loss modulation and also feedback of laser output on this behaviour is treated. Both electrically excited and optically pumped gas lasers are considered, and an analysis of dynamical instabilities in the emission from free electron lasers are presented. Instabilities in passive optically bistable systems include a detailed analysis of the global bifurcations and chaos in which transverse effects are accounted for. Experimental verification of degenerative pulsations and chaos in intrinsic bistable systems is described for various optical feedback systems in which atomic and molecular gases and semiconductors are used as the nonlinear media. Results for a hybrid bistable optical system are significant in providing an important test of current understanding of the dynamical behaviour of passive bistable systems.




Dynamics of Synergetic Systems


Book Description

This book contains the invited papers of an international symposium on Synergetics which was held at ZIF (Center for interdisciplinary research) at Bielefeld. Fed. Rep. of Germany. Sept. 24. -29 . • 1979. In keeping with our previous meetings. this one was truly interdisciplinary. Synergetic systems are those that can produce macroscopic spatial. temporal or functional structures in a self-organized way. I think that these proceedings draw a rather coherent picture of the present status of Synergetics, emphasizing this time theoretical aspects, although the proceedings contain also important con tributions from the experimental side. Synergetics has ties to many quite different disciplines as is clearly mirrored by the following articles. Out of the many ties I pick here only one example which is alluded to in the title of this book. Indeed, there is an important branch of mathematics called dynamic systems theory for which the problems of Synergetics might become an eldorado. While, undoubtedly, a good deal of dynamic systems had been motivated by mechanics, such as celestial and fluid dynamics, theory Synergetics provides us with a wealth of related problems of quite different fields, e. g. , lasers or chemical reaction processes. In order to become adequately applicable, in quite a number of realistic cases dynamic systems theory must be developed further. This is equally true for a number of other approaches.




Hermann Haken: From the Laser to Synergetics


Book Description

Hermann Haken (born 1927) is one of the “fathers” of the quantum-mechanical laser theory, formulated between 1962 and 1966, in strong competition with American researchers. Later on, he created Synergetics, the science of cooperation in multicomponent systems. The book concentrates on the development of his scientific work during the first thirty-five years of his career. In 1970 he and his doctoral student Robert Graham were able to show that the laser is an example of a nonlinear system far from thermal equilibrium that shows a phase-transition like behavior. Subsequently, this insight opened the way for the formulation of Synergetics. Synergetics is able to explain, how very large systems show the phenomenon of self-organization that can be mathematically described by only very few order parameters. The results of Haken’s research were published in two seminal books Synergetics (1977) and Advanced Synergetics (1983). After the year 1985 Haken concentrated his research on the macroscopic foundation of Synergetics. This led him towards the application of synergetic principles in medicine, cognitive research and, finally, in psychology. A comprehensive bibliography of Hermann Haken’s publications (nearly 600 numbers) is included in the book.




The General Economic Theory


Book Description

This book develops a general economic theory that integrates various economic theories and ideas and establishes important relationships between economic variables that are not formally recognized in the economic literature. The author demonstrates how the basic model is integrated with neoclassical growth theory, Walrasian general equilibrium theory, and Ricardian distribution theory, and how these theories can be incorporated through a single set of equations with a microeconomic basis. The book offers new insights into income and wealth distribution between heterogeneous households, racial and national differences in growth and development, interdependence between different stock variables with portfolio choices among different markets. It will appeal to scholars of economists interested in an integrative theoretical approach to this discipline.




The Economics of Digital Transformation


Book Description

This book takes an in-depth look at the economics of digital transformation. Presenting a variety of perspectives from experts, it deals with the socioeconomic changes associated with the digital transformation of production systems. The chapters also address the impacts of digital transformation on the sustainable functioning of socioeconomic and environmental systems. Select chapters also investigate the consequences of adopting intelligent learning systems, both in terms of replacing the human labor force. and their effects on the smart digital management and security of cities, places, and people. Lastly, chapters discuss important questions regarding innovations leading to sustainable change.




Noise in Nonlinear Dynamical Systems


Book Description

A specially written review of all areas of noise and nonlinear in natural environments.




The Dynamics of Ambiguity


Book Description

A fascinating topic! A fascinating book! Quite often, science and art are considered as the "two cultures" dividing our society into two separate groups. However, important phenomena in science and art have a common root. By using the concept of broken symmetries the author enlightens the similarities between the process of creation of an art work and of a scientific theory, as well as the similarity between the process of perception and measurement. Symmetry is a no-change as the outcome of a change. In order to obtain information, the symmetry of an initially balanced system must be broken. The consequence is ambiguity, the critical point of any dynamical instability. Here the world of physics and emotional and rational spheres match.The dynamics of perception (the transformation leading to a choice) involve well known physical phenomena like symmetry, entropy and others. Many illustrations and a strict ratio between popular inserts and technical chapters make this a scintillating book explaining why sciences and arts have in common the feature of universality.