Molecular Aggregation


Book Description




Nano and Molecular Electronics Handbook


Book Description

There are fundamental and technological limits of conventional microfabrication and microelectronics. Scaling down conventional devices and attempts to develop novel topologies and architectures will soon be ineffective or unachievable at the device and system levels to ensure desired performance. Forward-looking experts continue to search for new paradigms to carry the field beyond the age of microelectronics, and molecular electronics is one of the most promising candidates. The Nano and Molecular Electronics Handbook surveys the current state of this exciting, emerging field and looks toward future developments and opportunities. Molecular and Nano Electronics Explained Explore the fundamentals of device physics, synthesis, and design of molecular processing platforms and molecular integrated circuits within three-dimensional topologies, organizations, and architectures as well as bottom-up fabrication utilizing quantum effects and unique phenomena. Technology in Progress Stay current with the latest results and practical solutions realized for nanoscale and molecular electronics as well as biomolecular electronics and memories. Learn design concepts, device-level modeling, simulation methods, and fabrication technologies used for today's applications and beyond. Reports from the Front Lines of Research Expert innovators discuss the results of cutting-edge research and provide informed and insightful commentary on where this new paradigm will lead. The Nano and Molecular Electronics Handbook ranks among the most complete and authoritative guides to the past, present, and future of this revolutionary area of theory and technology.




Functionalization of Molecular Architectures


Book Description

Low-dimensional compounds are molecules that correspond to various shapes, such as rod, ladder (one-dimensional compounds), and sheet (two-dimensional compounds). They are ordinarily found in electromagnetic fields. Recently, versatile low-dimensional compounds were proposed for use as components of various functional materials. These new-class low-dimensional compounds contribute significantly to industrial/materials sciences. The molecular architecture consisting of low-dimensional compounds can also be found in nature. One example is the cell cytoskeleton, which is a network- or bundle-like architecture consisting of rod-like protein assemblies. The cell accomplishes its motility by structural transition of the cytoskeleton—that is, phase transition of the architecture of low-dimensional compounds in response to some stimuli induces shape changes in cells. Another example is nacre, which is composed of layered aragonite platelets, usually a metastable CaCO3 polymorph. The layered inorganic platelets give nacre its stiffness and noncombustibility. Thus, the molecular architecture of low-dimensional compounds in natural life contributes to their functionality. This book reviews various advanced studies on the application of low-dimensional compounds and is, therefore, important for the development of materials sciences and industrial technologies.




Handbook of Nanoscience, Engineering, and Technology


Book Description

The ability to study and manipulate matter at the nanoscale is the defining feature of 21st-century science. The first edition of the standard-setting Handbook of Nanoscience, Engineering, and Technology saw the field through its infancy. Reassembling the preeminent team of leading scientists and researchers from all areas of nanoscience and nanote




Chemistry and Applications of Benzimidazole and its Derivatives


Book Description

Finding new strategies for synthesizing benzimidazole derivatives and functionalizing the benzimidazole core has proved to be important due to the compound's various applications in medicine, chemistry, and other areas. The multitude of benzimidazole derivatives marketed as drugs has led to intensive research in the field for the discovery of new biologically active structures. The general applications of benzimidazole derivatives in materials chemistry, electronics, technology, dyes, pigments, and agriculture open up new research horizons. This book guides the rational design of benzimidazole derivatives synthesis with certain applications. Chapters cover such topics as therapeutic use of benzimidazole in conditions like diabetes, viruses, and parasitic diseases; X-ray crystal structure of selected benzimidazole derivatives; benzimidazole compounds for cancer therapy; and others.




Functional Supramolecular Architectures


Book Description

A comprehensive overview of functional nanosystems based on organic and polymeric materials and their impact on current and future research and technology in the highly interdisciplinary field of materials science. As such, this handbook covers synthesis and fabrication methods, as well as properties and characterization of supramolecular architectures. Much of the contents are devoted to existing and emerging applications, such as organic solar cells, transistors, diodes, nanowires and molecular switches. The result is an indispensable resource for materials scientists, organic chemists, molecular physicists and electrochemists looking for a reliable reference on this hot topic.




Progress in the Chemistry of Organic Natural Products 110


Book Description

The book summarizes important aspects of cheminformatics that are relevant for natural product research. It highlights cheminformatics tools that help to match natural products with their respective biological targets or off-targets, and discusses the potential and limitations of this approach.




Designing Bioactive Molecules


Book Description

Three-dimensional structural information often provides the key to dis covering or designing bioactive molecules and compounds. This volume c overs the principal computational techniques for processing three-dime nsional structures of small molecules and compounds. It describes data base construction and searching, analysis of structure-activity relati onships by pharmacophore mapping and QSAR, prediction of biological po tency of small molecules and compounds by QSAR and by docking to macro molecular targets. The book also includes a chapter on de novo design of ligands to fit a macromolecular target.