Iron Oxide Nanoparticles for Biomedical Applications


Book Description

Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization and Application begins with several chapters covering the synthesis, stabilization, physico-chemical characterization and functionalization of iron oxide nanoparticles. The second part of the book outlines the various biomedical imaging applications that currently take advantage of the magnetic properties of iron oxide nanoparticles. Brief attention is given to potential iron oxide based therapies, while the final chapter covers nanocytotoxicity, which is a key concern wherever exposure to nanomaterials might occur. This comprehensive book is an essential reference for all those academics and professionals who require thorough knowledge of recent and future developments in the role of iron oxide nanoparticles in biomedicine.




Green Metal Nanoparticles


Book Description

This groundbreaking book uniquely focuses on the exploration of the green synthesis of metal nanoparticles and their characterization and applications. Metal nanoparticles are the basic elements of nanotechnology as they are the primary source used in the design of nanostructured devices and materials. Nanomaterials can be manufactured either incidentally, with physical or chemical methods, or naturally; and the high demand for them has led to their large-scale production by various toxic solvents or high energy techniques. However, due to the growing awareness of environmental and safety issues, the use of clean, nontoxic and environment-friendly ways to synthesize metal nanoparticles has emerged out of necessity. The use of biological resources, such as microbes, plant parts, vegetable wastes, agricultural wastes, gums, etc., has grown to become an alternative way of synthesizing metal nanoparticles. This biogenic synthesis is green, environmentally friendly, cost-effective, and nontoxic. The current multi-authored book includes recent information and builds a database of bioreducing agents for various metal nanoparticles using different precursor systems. Green Metal Nanoparticles also highlights different simple, cost-effective, environment-friendly and easily scalable strategies, and includes parameters for controlling the size and shape of the materials developed from the various greener methods.




Iron Oxide Nanoparticles and Their Applications


Book Description

Iron oxide nanoparticles demonstrate a number of unique properties, including superparamagnetism, biocompatibility, and non-toxicity, which make them an ideal candidate for a variety of applications, as described in this book. Chapter One deals with the recent advances in various synthetic procedures of iron oxide-based nanocomposites, their characterization methods, and their potential applications in energy storage devices, supercapacitors, fuel cells, and more. Chapter Two summarizes current applications of immobilized enzymes based on iron oxide magnetic nanoparticles and discusses future growth prospects. Chapter Three reviews the properties and applications of enzymatic sensors in exploiting tyrosinase, glucose oxidase, and other enzymes for sensing a broad range of biomedical species. Chapter Four discusses magnetic magnetite and maghemite iron oxide nanoparticles from a variety of perspectives. Chapter Five describes how nano iron oxides could be used to remove pollutants from the environment. Chapter Six provides a comprehensive review of the catalytic applications of iron oxide nanoparticles in organic synthesis, high temperature reactions, gas-phase processes, wastewater treatment and supercritical upgradation of heavy petroleum oils. Chapter Seven details the photocatalytic degradation of a class of toxic, aromatic pollutants, namely, phenols and substituted phenols using different types of photocatalysts in the nano size range for effective removal these compounds from water bodies. Lastly, Chapter Eight elucidates various magnetic nanomaterials-based adsorbents used in adsorption techniques for wastewater treatment.




Green Nanoparticles


Book Description

Nanotechnology is the application of science to control matter at the molecular level. It has become one of the most promising applied technologies in all areas of science. Nanoparticles have multi-functional properties and have created very interesting applications in various fields such as medicine, nutrition, bioenergy, agriculture and the environment. But the biogenic syntheses of monodispersed nanoparticles with specific sizes and shapes have been a challenge in biomaterial science. Nanoparticles are of great interest due to their extremely small size and large surface-to-volume ratio, which lead to both chemical and physical differences in their properties (e.g., mechanical properties, biological and sterical properties, catalytic activity, thermal and electrical conductivity, optical absorption and melting point) compared to bulk of the same chemical composition. Recently, however, synthesizing metal nanoparticles using green technology via microorganisms, plants, viruses, and so on, has been extensively studied and has become recognized as a green and efficient way for further exploiting biological systems as convenient nanofactories. Thus the biological synthesis of nanoparticles is increasingly regarded as a rapid, ecofriendly, and easily scaled-up technology. Today researchers are developing new techniques and materials using nanotechnology that may be suitable for plants to boost their native functions. Recently, biological nanoparticles were found to be more pharmacologically active than physico-chemically synthesized nanoparticles. Various applications of biosynthesized nanoparticles have been discovered, especially in the field of biomedical research, such as applications to specific delivery of drugs, use for tumor detection, angiogenesis, genetic disease and genetic disorder diagnosis, photoimaging, and photothermal therapy. Further, iron oxide nanoparticles have been applied to cancer therapy, hyperthermia, drug delivery, tissue repair, cell labeling, targeting and immunoassays, detoxification of biological fluids, magnetic resonance imaging, and magnetically responsive drug delivery therapy. Nanoparticle synthesis for plant byproducts for biomedical applications has vast potential. This book offers researchers in plant science and biomedicine the latest research and opportunity to develop new tools for the synthesis of environmentally friendly and cost-effective nanoparticles for applications in biomedicine as well as other various fields.




Clinical Applications of Magnetic Nanoparticles


Book Description

Offering the latest information in magnetic nanoparticle (MNP) research, this book builds upon the success of the first volume and provides an updated and comprehensive review, from synthesis, characterization, and biofunctionalization to clinical applications of MNPs, including the diagnosis and treatment of cancers. The book captures some of emerging research area which was not available in the first volume. Good Manufacturing Practices and Commercialization of MNPs are also included. This volume, also written by some of the most qualified experts in the field, incorporates new developments in the literature, and continues to bridge the gaps between the different areas in this field.




The Iron Oxides


Book Description

This book brings together in one, compact volume all aspects of the available information about the iron oxides. It presents a coherent, up to date account of the properties, reactions and mechanisms of formation of these compounds. In addition, there are chapters dealing with iron oxides in rocks and soils, as biominerals and as corrosion products together with methods of synthesis and the numerous application of these compounds. Their role in the environment is also discussed. The authors are experts in the field of iron oxides and have worked on all the topics covered. Much recent data from the authors' own laboratories is included and opportunities for further research are indicated. Special features are the electron micrographs and colour plates together with the many different spectra used to illustrate properties and aspects of behaviour. Numerous tables and graphs enable trends and relationships to be seen at a glance. The book concludes with an extensive bibliography. This book should prove invaluable to industry and to all researchers who, whatever their background and level of experience, are interested in this rapidly expanding field. It is an essential volume for any scientific library and is now in its second, completely revised and extended edition!




Iron Nanomaterials for Water and Soil Treatment


Book Description

Nanotechnology has a great potential for providing efficient, cost-effective, and environmentally acceptable solutions to face the increasing requirements on quality and quantity of fresh water for industrial, agricultural, or human use. Iron nanomaterials, either zerovalent iron (nZVI) or iron oxides (nFeOx), present key physicochemical properties that make them particularly attractive as contaminant removal agents for water and soil cleaning. The large surface area of these nanoparticles imparts high sorption capacity to them, along with the ability to be functionalized for the enhancement of their affinity and selectivity. However, one of the most important properties is the outstanding capacity to act as redox-active materials, transforming the pollutants to less noxious chemical species by either oxidation or reduction, such as reduction of Cr(VI) to Cr(III) and dehalogenation of hydrocarbons. This book focuses on the methods of preparation of iron nanomaterials that can carry out contaminant removal processes and the use of these nanoparticles for cleaning waters and soils. It carefully explains the different aspects of the synthesis and characterization of iron nanoparticles and methods to evaluate their ability to remove contaminants, along with practical deployment. It overviews the advantages and disadvantages of using iron-based nanomaterials and presents a vision for the future of this nanotechnology. While this is an easy-to-understand book for beginners, it provides the latest updates to experts of this field. It also opens a multidisciplinary scope for engineers, scientists, and undergraduate and postgraduate students. Although there are a number of books published on the subject of nanomaterials, not too many of them are especially devoted to iron materials, which are rather of low cost, are nontoxic, and can be prepared easily and envisaged to be used in a large variety of applications. The literature has scarce reviews on preparation of iron nanoparticles from natural sources and lacks emphasis on the different processes, such as adsorption, redox pathways, and ionic exchange, taking place in the removal of different pollutants. Reports and mechanisms on soil treatment are not commonly found in the literature. This book opens a multidisciplinary scope for engineers and scientists and also for undergraduate or postgraduate students.




Magnetic Nanoparticles in Human Health and Medicine


Book Description

Magnetic Nanoparticles in Human Health and Medicine Explores the application of magnetic nanoparticles in drug delivery, magnetic resonance imaging, and alternative cancer therapy Magnetic Nanoparticles in Human Health and Medicine addresses recent progress in improving diagnosis by magnetic resonance imaging (MRI) and using non-invasive and non-toxic magnetic nanoparticles for targeted drug delivery and magnetic hyperthermia. Focusing on cancer diagnosis and alternative therapy, the book covers both fundamental principles and advanced theoretical and experimental research on the magnetic properties, biocompatibilization, biofunctionalization, and application of magnetic nanoparticles in nanobiotechnology and nanomedicine. Chapters written by a panel of international specialists in the field of magnetic nanoparticles and their applications in biomedicine cover magnetic hyperthermia (MHT), MRI contrast agents, biomedical imaging, modeling and simulation, nanobiotechnology, toxicity issues, and more. Readers are provided with accurate information on the use of magnetic nanoparticles in diagnosis, drug delivery, and alternative cancer therapeutics—featuring discussion of current problems, proposed solutions, and future research directions. Topics include current applications of magnetic iron oxide nanoparticles in nanomedicine and alternative cancer therapy: drug delivery, magnetic resonance imaging, superparamagnetic hyperthermia as alternative cancer therapy, magnetic hyperthermia in clinical trials, and simulating the physics of magnetic particle heating for cancer therapy. This comprehensive volume: Covers both general research on magnetic nanoparticles in medicine and specific applications in cancer therapeutics Discusses the use of magnetic nanoparticles in alternative cancer therapy by magnetic and superparamagnetic hyperthermia Explores targeted medication delivery using magnetic nanoparticles as a future replacement of conventional techniques Reviews the use of MRI with magnetic nanoparticles to increase the diagnostic accuracy of medical imaging Magnetic Nanoparticles in Human Health and Medicine is a valuable resource for researchers in the fields of nanomagnetism, magnetic nanoparticles, nanobiomaterials, nanobioengineering, biopharmaceuticals nanobiotechnologies, nanomedicine, and biopharmaceuticals, particularly those focused on alternative cancer diagnosis and therapeutics.




Green Synthesis, Characterization and Applications of Nanoparticles


Book Description

Green Synthesis, Characterization and Applications of Nanoparticles shows how eco-friendly nanoparticles are engineered and used. In particular, metal nanoparticles, metal oxide nanoparticles and other categories of nanoparticles are discussed. The book outlines a range of methodologies and explores the appropriate use of each. Characterization methods include spectroscopic, microscopic and diffraction methods, but magnetic resonance methods are also included as they can be used to understand the mechanism of nanoparticle synthesis using organisms. Applications covered include targeted drug delivery, water purification and hydrogen generation. This is an important research resource for those wishing to learn more about how eco-efficient nanoparticles can best be used. Theoretical details and mathematical derivations are kept to a necessary minimum to suit the need of interdisciplinary audiences and those who may be relatively new to the field. - Explores recent trends in growth, characterization, properties and applications of nanoparticles - Gives readers an understanding on how they are applied through the use of case studies and examples - Assesses the advantages and disadvantages of a variety of synthesis and characterization techniques for green nanoparticles in different situations




Health and Environmental Safety of Nanomaterials


Book Description

Health and Environmental Safety of Nanomaterials addresses concerns about the impact of nanomaterials on the environment and human health, and examines the safety of specific nanomaterials. Understanding the unique chemical and physical properties of nanostructures has led to many developments in the applications of nanocomposite materials. While these materials have applications in a huge range of areas, their potential for toxicity must be thoroughly understood. Part one introduces the properties of nanomaterials, nanofillers, and nanocomposites, and questions whether they are more toxic than their bulk counterparts. Part two looks at the release and exposure of nanomaterials. The text covers sampling techniques and data analysis methods used to assess nanoparticle exposure, as well as protocols for testing the safety of polymer nanocomposites. It explains characterization techniques of airborne nanoparticles and life cycle assessment of engineered nanomaterials. Part three focuses on the safety of certain nanomaterials, including nanolayered silicates, carbon nanotubes, and metal oxides. In particular, it explores the potential ecotoxicological hazards associated with the different structures of carbon nanotubes and the safe recycling of inorganic and carbon nanoparticles. The final two chapters address the risks of nanomaterials in fire conditions: their thermal degradation, flammability, and toxicity in different fire scenarios. This is a scientific guide with technical background for professionals using nanomaterials in industry, scientists, academicians, research scholars, and polymer engineers. It also offers a deep understanding of the subject for undergraduate and postgraduate students. - Introduces the properties of nanomaterials, nanofillers, and nanocomposites, and questions whether they are more toxic than their bulk counterparts - Covers sampling techniques and data analysis methods used to assess nanoparticle exposure, as well as protocols for testing the safety of polymer nanocomposites - Explores the potential ecotoxicological hazards associated with the different structures of carbon nanotubes and the safe recycling of inorganic and carbon nanoparticles