Synthesis, Characterization and Properties of Energetic/reactive Nanomaterials


Book Description

The advent of nanomaterials has introduced a new dimension in applications of energetic and reactive materials. A fundamental understanding of their synthesis mechanisms, atomic- and molecular-scale structural characteristics, and an evaluation of properties combined with modeling of the limits to those properties are required to realize the full potential of energetic and reactive nanomaterials. Many techniques have been recently developed that make it possible to exploit the benefits of the "nano" structure and design materials with desired energy release rates and energy densities, while they also improve their safety, reliability and load-bearing capability. Advances in modeling and characterization have made it possible to determine mechanisms controlling the thermal, chemical and mechanical behavior of nanomaterials. This volume brings together researchers from around the world to assess fundamental studies on synthesis, characterization of structure, and evaluation of properties of energetic/reactive nanomaterials. Applications such as new propellant formulations, underwater detonation developments, biomedical research, and combustion of nanolayered metal films for cladding materials are featured. Topics include: applications and toxicology; synthesis; characterization; characterization and theory; theory and modeling; and general discussion.




Energetic Nanomaterials


Book Description

Energetic Nanomaterials: Synthesis, Characterization, and Application provides researchers in academia and industry the most novel and meaningful knowledge on nanoenergetic materials, covering the fundamental chemical aspects from synthesis to application. This valuable resource fills the current gap in book publications on nanoenergetics, the energetic nanomaterials that are applied in explosives, gun and rocket propellants, and pyrotechnic devices, which are expected to yield improved properties, such as a lower vulnerability towards shock initiation, enhanced blast, and environmentally friendly replacements of currently used materials. The current lack of a systematic and easily available book in this field has resulted in an underestimation of the input of nanoenergetic materials to modern technologies. This book is an indispensable resource for researchers in academia, industry, and research institutes dealing with the production and characterization of energetic materials all over the world. - Written by high-level experts in the field of nanoenergetics - Covers the hot topic of energetic nanomaterials, including nanometals and their applications in nanoexplosives - Fills a gap in energetic nanomaterials book publications




Advanced Nanomaterials for Catalysis and Energy


Book Description

Advanced Nanomaterials for Catalysis and Energy: Synthesis, Characterization and Applications outlines new approaches to the synthesis of nanomaterials (synthesis in flow conditions, laser electrodispersion of single metals or alloys on carbon or oxide supports, mechanochemistry, sol-gel routes, etc.) to provide systems with a narrow particle size distribution, controlled metal-support interaction and nanocomposites with uniform spatial distribution of domains of different phases, even in dense sintered materials. Methods for characterization of real structure and surface properties of nanomaterials are discussed, including synchrotron radiation diffraction and X-ray photoelectron spectroscopy studies, neutronography, transmission/scanning electron microscopy with elemental analysis, and more. The book covers the effect of nanosystems' composition, bulk and surface properties, metal-support interaction, particle size and morphology, deposition density, etc. on their functional properties (transport features, catalytic activity and reaction mechanism). Finally, it includes examples of various developed nanostructured solid electrolytes and mixed ionic-electronic conductors as materials in solid oxide fuel cells and asymmetric supported membranes for oxygen and hydrogen separation. - Outlines synthetic and characterization methods for nanocatalysts - Relates nanocatalysts' properties to their specific applications - Proposes optimization methods aiming at specific applications




Advanced Nanomaterials and Their Applications in Renewable Energy


Book Description

Advanced Nanomaterials and Their Applications in Renewable Energy presents timely topics related to nanomaterials' feasible synthesis and characterization, and their application in the energy fields. In addition, the book provides insights and scientific discoveries in toxicity study, with information that is easily understood by a wide audience. Advanced energy materials are important in designing materials that have greater physical, electronic, and optical properties. This book emphasizes the fundamental physics and chemistry underlying the techniques used to develop solar and fuel cells with high charge densities and energy conversion efficiencies. New analytical techniques (synchronous X-ray) which probe the interactions of particles and radiation with matter are also explored, making this book an invaluable reference for practitioners and those interested in the science. - Provides a comprehensive review of solar energy, fuel cells, and gas storage from 2010 to the present - Reviews feasible synthesis and modern analytical techniques used in alternative energy - Explores examples of research in alternative energy, including current assessments of nanomaterials and safety - Contains a glossary of terms, units, and historical benchmarks - Presents a useful guide that will bring readers up to speed on historical developments in alternative fuel cells




Al-based Energetic Nano Materials


Book Description

Over the past two decades, the rapid development of nanochemistry and nanotechnology has allowed the synthesis of various materials and oxides in the form of nanopowders making it possible to produce new energetic compositions and nanomaterials. This book has a bottom-up structure, from nanomaterials synthesis to the application fields. Starting from aluminum nanoparticles synthesis for fuel application, it proposes a detailed state-of-the art of the different methods of preparation of aluminum-based reactive nanomaterials. It describes the techniques developed for their characterization and, when available, a description of the fundamental mechanisms responsible for their ignition and combustion. This book also presents the possibilities and limitations of different energetic nanomaterials and related structures as well as the analysis of their chemical and thermal properties. The whole is rounded off with a look at the performances of reactive materials in terms of heat of reaction and reactivity mainly characterized as the self-sustained combustion velocity. The book ends up with a description of current reactive nanomaterials applications underlying the promising integration of aluminum-based reactive nanomaterial into micro electromechanical systems.




Innovative Energetic Materials: Properties, Combustion Performance and Application


Book Description

This book focuses on the combustion performance and application of innovative energetic materials for solid and hybrid space rocket propulsion. It provides a comprehensive overview of advanced technologies in the field of innovative energetic materials and combustion performance, introduces methods of modeling and diagnosing the aggregation/agglomeration of active energetic metal materials in solid propellants, and investigates the potential applications of innovative energetic materials in solid and hybrid propulsion. In addition, it also provides step-by-step solutions for sample problems to help readers gain a good understanding of combustion performance and potential applications of innovative energetic materials in space propulsion. This book serves as an excellent resource for researchers and engineers in the field of propellants, explosives, and pyrotechnics.




Energetic Materials


Book Description

Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine. - This volume presents a series of articles concerning current important topics in quantum chemistry. The invited articles are written by the best people in the field




Nanomaterials in Rocket Propulsion Systems


Book Description

Nanomaterials in Rocket Propulsion Systems covers the fundamentals of nanomaterials and examines a wide range of innovative applications, presenting the current state-of-the-art in the field. Opening with a chapter on nano-sized energetic materials, the book examines metal nanoparticles-based fuels, ballistic modifiers, stabilizers and catalysts as the components of rocket propellants. Hydrogen storage materials for rocket propulsion based on nanotubes are then discussed, as are nano-porous materials and metal organic frameworks, nano-gelled propellants, nano-composite ablators and ceramic nano-composites. Other applications examined include high thermal conductivity metallic nano-composite nozzle liners, nano-emitters for Coulomb propulsion of space-crafts, and highly thermostable nano-ceramics for rocket motors. The book finishes with coverage of combustion of nano-sized rocket fuels, nano-particles and their combustion in micro- and nano-electromechanical systems (MEMS/NEMS), plasma propulsion and nano-scale physics. Users will find this to be a valuable resource for academic and government institutions, professionals, new researchers and graduate students working in the application of nanomaterials in the aerospace industry. - Provides a detailed overview of different types of nanomaterials used in rocket propulsion, highlighting different situations in which different materials are used - Demonstrates the use of new nanomaterial concepts, allowing for an increase in payload capacity or a decrease in launch mass - Explores a range of applications using metal nanopowders, presenting a panorama on cutting-edge, technological developments




The ELSI Handbook of Nanotechnology


Book Description

This Handbook focuses on the recent advancements in Safety, Risk, Ethical Society and Legal Implications (ESLI) as well as its commercialization of nanotechnology, such as manufacturing. Nano is moving out of its relaxation phase of scientific route, and as new products go to market, organizations all over the world, as well as the general public, are discussing the environmental and health issues associated with nanotechnology. Nongovernmental science organizations have long since reacted; however, now the social sciences have begun to study the cultural portent of nanotechnology. Societal concerns and their newly constructed concepts, show nanoscience interconnected with the economy, ecology, health, and governance. This handbook addresses these new challenges and is divided into 7 sections: Nanomaterials and the Environment; Life Cycle Environmental Implications of Nanomanufacturing; Bioavailability and Toxicity of Manufactured Nanoparticles in Terrestrial Environments; Occupational Health Hazards of Nanoparticles; Ethical Issues in Nanotechnology; Commercialization of Nanotechnology; Legalization of Nanotechnology.




Nano-Energetic Materials


Book Description

This book presents the latest research on the area of nano-energetic materials, their synthesis, fabrication, patterning, application and integration with various MEMS systems and platforms. Keeping in mind the applications for this field in aerospace and defense sectors, the articles in this volume contain contributions by leading researchers in the field, who discuss the current challenges and future perspectives. This volume will be of use to researchers working on various applications of high-energy research.