Synthesis Gas Combustion


Book Description

Coal, still used to generate more than half of the electric power in the U.S., will likely be part of any future global energy plan. But this finite resource is also responsible for 80 percent of the CO2 emissions from power production, and its continued use will require improved processing techniques that are less damaging to the environment and l




Synthesis Gas Combustion


Book Description

Coal, still used to generate more than half of the electric power in the U.S., will likely be part of any future global energy plan. But this finite resource is also responsible for 80 percent of the CO2 emissions from power production, and its continued use will require improved processing techniques that are less damaging to the environment and less costly. One viable option is the use of "clean coal" energy conversion devices that rely on the combustion of gasified coal, referred to as synthesis gas, or syngas. Synthesis Gas Combustion: Fundamentals and Applications presents work from leading combustion authorities who offer their perspectives on various energy and environmental issues linked to the development of syngas and hydrogen combustion. This volume summarizes the current understanding of syngas, focusing first on combustion fundamentals and then on issues specific to application and utilization in fuel cells, internal combustion engines, and steady-flowing combustion devices such as gas turbines or boilers. In discussing syngas production, this book details the technical issues and trade-offs that influence fuel composition. It also explores combustion fundamentals of "clean coal" technologies, including chemical kinetics, flame properties, and emissions. Governments and companies around the world are devoting significant resources to improve understanding of the combustion of coal and bio-derived synthesis gases, to maximize the benefits of gasification technology and limit CO2 emissions. This valuable reference provides state-of-the-art context and technical information needed to develop clean energy systems. These include clean coal technologies, hydrogen and liquid fuel production, use of biomass feedstocks, and usage in fuel cells and other advanced power generation technologies.




Sustainable Alternative Syngas Fuel


Book Description

The development and use of sustainable and alternative fuels (syngas, biogas, biodiesel, bio-oil, hydrogen) derived from sources other than petroleum is needed due to the limited fossil fuel resources, the need for reduction of atmospheric greenhouse gas emissions, energy security, and to meet the future high energy demand due to population growth. New alternative fuels that can be produced locally and derived from renewable sources will be more sustainable compared to fossil fuels. Alternative and renewable fuels can be produced using different thermochemical and bio-chemical processes. Gasification is a thermochemical process used to produce syngas fuel (mainly hydrogen and carbon dioxide) from renewable (biomass) and conventional (coal) sources. The syngas fuels produced from the gasification process can be used for different applications: power generation (combustion of syngas fuel in gas turbine engines), heating, and transportation (internal combustion engines). This book intends to provide the reader with an overview of the current technologies, methods, and strategies of syngas fuel production, characterization, and application.




Oxygen-Enhanced Combustion


Book Description

Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion - new technology producing oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include numerous environmental benefits as well as increased energy efficiency and productivity. The text compiles information about using oxygen to enhance high temperature industrial heating and melting processes - serving as a unique resource for specialists implementing the use of oxygen in combustion systems; combustion equipment and industrial gas suppliers; researchers; funding agencies for advanced combustion technologies; and agencies developing regulations for safe, efficient, and environmentally friendly combustion systems. Oxygen-Enhanced Combustion: Examines the fundamentals of using oxygen in combustion, pollutant emissions, oxygen production, and heat transfer Describes ferrous and nonferrous metals, glass, and incineration Discusses equipment, safety, design, and fuels Assesses recent trends including stricter environmental regulations, lower-cost methods of producing oxygen, improved burner designs, and increasing fuel costs Emphasizing applications and basic principles, this book will act as the primary resource for mechanical, chemical, aerospace, and environmental engineers and scientists; physical chemists; fuel technologists; fluid dynamists; and combustion design engineers. Topics include: General benefits Economics Potential problems Pollutant emissions Oxygen production Adsorption Air separation Heat transfer Ferrous metals Melting and refining processes Nonferrous metals Minerals Glass furnaces Incineration Safety Handling and storage Equipment design Flow controls Fuels




Coal Gasification and Its Applications


Book Description

Skyrocketing energy costs have spurred renewed interest in coal gasification. Currently available information on this subject needs to be updated, however, and focused on specific coals and end products. For example, carbon capture and sequestration, previously given little attention, now has a prominent role in coal conversion processes.This book approaches coal gasification and related technologies from a process engineering point of view, with topics chosen to aid the process engineer who is interested in a complete, coal-to-products system. It provides a perspective for engineers and scientists who analyze and improve components of coal conversion processes.The first topic describes the nature and availability of coal. Next, the fundamentals of gasification are described, followed by a description of gasification technologies and gas cleaning processes. The conversion of syngas to electricity, fuels and chemicals is then discussed. Finally, process economics are covered. Emphasis is given to the selection of gasification technology based on the type of coal fed to the gasifier and desired end product: E.g., lower temperature gasifiers produce substantial quantities of methane, which is undesirable in an ammonia synthesis feed. This book also reviews gasification kinetics which is informed by recent papers and process design studies by the US Department of Energy and other groups, and also largely ignored by other gasification books.• Approaches coal gasification and related technologies from a process engineering point of view, providing a perspective for engineers and scientists who analyze and improve components of coal conversion processes • Describes the fundamentals of gasification, gasification technologies, and gas cleaning processes • Emphasizes the importance of the coal types fed to the gasifier and desired end products • Covers gasification kinetics, which was largely ignored by other gasification books - Provides a perspective for engineers and scientists who analyze and improve components of the coal conversion processes - Describes the fundamentals of gasification, gasification technologies, and gas cleaning processes - Covers gasification kinetics, which was largely ignored by other gasification books




Combustion for Material Synthesis


Book Description

This book summarizes the state of the art in combustion synthesis of advanced materials. It is a first attempt to summarize and critically review in one monograph the mechanisms of combustion and product structure formation for a variety of systems, including nanosystems. The authors discuss a wide range of topics including phenomenology, theory, and modern in-situ experimental approaches to investigate the heterogeneous self-sustained reactions, as well as properties of the product synthesized, and methods for large-scale materials production.




Syngas


Book Description

To reduce the dependence on dwindling crude oil reserves, the rational design of heterogeneous catalysts for the selective conversion of syngas into valuable fuels and chemicals is considered a principal scientific and industrial target. Syngas is an important intermediate for manufacturing clean fuels and chemicals, which can be derived from a variety of carbonaceous resources such as coal, natural gas, shale gas, municipal solid waste (MSW) or lignocellulosic biomass feedstocks through gasification or reforming technologies. The use of biomass feedstock and its derivatives (biomass-derived syngas) to produce renewable energy, carbon neutral and clean fuels and chemicals is gaining increasing interests because these resources can supplement existing supplies of raw materials and have less net environmental impact. This book provides recent research on the production, emerging technologies and ecological impacts of syngas.




Hydrogen and Syngas Production and Purification Technologies


Book Description

Covers the timely topic of fuel cells and hydrogen-based energy from its fundamentals to practical applications Serves as a resource for practicing researchers and as a text in graduate-level programs Tackles crucial aspects in light of the new directions in the energy industry, in particular how to integrate fuel processing into contemporary systems like nuclear and gas power plants Includes homework-style problems




Biomass Energy with Carbon Capture and Storage (BECCS)


Book Description

An essential resource for understanding the potential role for biomass energy with carbon capture and storage in addressing climate change Biomass Energy with Carbon Capture and Storage (BECCS) offers a comprehensive review of the characteristics of BECCS technologies in relation to its various applications. The authors — a team of expert professionals — bring together in one volume the technical, scientific, social, economic and governance issues relating to the potential deployment of BECCS as a key approach to climate change mitigation. The text contains information on the current and future opportunities and constraints for biomass energy, explores the technologies involved in BECCS systems and the performance characteristics of a variety of technical systems. In addition, the text includes an examination of the role of BECCS in climate change mitigation, carbon accounting across the supply chain and policy frameworks. The authors also offer a review of the social and ethical aspects as well as the costs and economics of BECCS. This important text: Reveals the role BECCS could play in the transition to a low-carbon economy Discusses the wide variety of technical and non-technical constraints of BECCS Presents the basics of biomass energy systems Reviews the technical and engineering issues pertinent to BECCS Explores the societal implications of BECCS systems Written for academics and research professionals, Biomass Energy with Carbon Capture and Storage (BECCS) brings together in one volume the issues surrounding BECCS in an accessible and authoritative manner.




Sustainable Strategies for the Upgrading of Natural Gas: Fundamentals, Challenges, and Opportunities


Book Description

Energy and feedstock materials for the chemical industry are in increasing demand and, with constraints related to the availability and use of oil, the energy and chemical industry is undergoing considerable changes. In recent years, major restructuring has occurred in the oil, petrochemical, and chemical industry, with increasing attention devoted to the use of natural gas, methane in particular, as a chemical feedstock rather than just as a fuel. The conversion of remote natural gas into liquid fuels or other transportable chemicals is a challenge to industrial catalysis. Few processes exist so far with the major ones involving the conversion of natural gas to synthesis gas by steam reforming, CO2 reforming, or partial oxidation, followed by the syntheses of methanol, hydrocarbons (Fischer-Tropsch synthesis), or ammonia. In this book, a comprehensive overview of the field of processing natural gas is given, through a series of chapters written by leading scientists and engineers in the field. New developments are discussed and current work relevant to the area is shown by a series of recent works by researchers working in this and related fields.