Click Triazoles


Book Description

B. R. Buckley and H. Heaney: Mechanistic Investigations of Copper(I)- Catalyzed Alkyne–Azide Cycloaddition Reactions.- J. D. Crowley and D. A. McMorran: “Click-Triazole” Coordination Chemistry: Exploiting 1,4-Disubstituted-1,2,3-Triazoles as Ligands.- S. Lee and A. H. Flood: Binding Anions in Rigid and Reconfigurable Triazole Receptors.- M. Watkinson: Click Triazoles as Chemosensors.- H.-F. Chow, C.-M. Lo and Y. Chen: Triazole-Based Polymer Gels.- T. Zheng, S. H. Rouhanifard, A. S. Jalloh, P. Wu: Click Triazoles for Bioconjugation.- S. Mignani, Y. Zhou, T. Lecourt and L. Micouin: Recent Developments in the Synthesis 1,4,5-Trisubstituted Triazoles.




Click Reactions in Organic Synthesis


Book Description

Endlich ein Buch zu Click-Reaktionen mit Schwerpunkt auf der organischen Synthese. Beschrieben werden das Click-Konzept, die zugrunde liegenden Mechanismen und Hauptanwendungsgebiete. NÜTZLICH: Die Click-Chemie ist ein wirkungsvoller Ansatz, um auf einfache Weise komplexe organische Moleküle aus verfügbaren Ausgangsmaterialien zu erzeugen ? der Traum jedes Organikers. EINZIGARTIGER SCHWERPUNKT: Aufgrund des besonderen Schwerpunkts auf der organischen Synthese ist dieses Buch für jeden Synthesechemiker von hohem Interesse. HILFREICH: Click-Reaktionen sind stereospezifisch, einfach durchzuführen, hoch ergiebig und lassen sich in einfach zu entfernenden oder nicht schädlichen Lösungsmitteln durchführen. INTERDISZIPLINÄR: Das Click-Konzept ist bei der Herstellung natürlicher Produkte, bioaktiver Verbindungen, von Kohlenhydraten, Arzneimitteln, Polymeren, supramolekularer Strukturen und Materialien weit verbreitet.




Chemistry of 1,2,3-triazoles


Book Description

The series Topics in Heterocyclic Chemistry presents critical reviews on present and future trends in the research of heterocyclic compounds. Overall the scope is to cover topics dealing with all areas within heterocyclic chemistry, both experimental and theoretical, of interest to the general heterocyclic chemistry community. The series consists of topic related volumes edited by renowned editors with contributions of experts in the field.




Organic Reactions in Water


Book Description

Volatile organic solvents are the normal media used in both research scale and industrial scale synthesis of organic chemicals. Their environmental impact is significant, however, and so the development of alternative reaction media has become of great interest. Developments in the use of water as a solvent for organic synthesis have reached the point where it could now be considered a viable solvent for many organic reactions. Organic Reactions in Water demonstrates the underlying principles of using water as a reaction solvent and, by reference to a range of reaction types and systems, it’s effective use in synthetic organic chemistry. Written by an internationally respected team of contributors, and with a strong focus on the practical use of water as a reaction medium, this book illustrates the enormous potential of water for the development of new and unique chemistries and synthetic strategies, while at the same time offering a much reduced environmental impact.




Microwaves in Organic Synthesis


Book Description

The third edition of the bestselling two-volume reference covers everything you need to know about microwave technology for synthesis - from the best equipment to nonthermal effects, from solid-support reactions to catalysis. Completely revised and updated with half of the authors completely new to the project, this comprehensive work is clearly divided into two parts on the fundamentals of microwave irradiation, and application of microwaves and synergies with other enabling techniques. Also new to this edition are chapters on on-line monitoring, flow chemistry, combination with ultrasounds and natural products, including multicomponent reactions. An indispensable source for organic, catalytic, physical, and medicinal chemists.




Green Chemistry


Book Description

To an increasing extent, "green chemistry" is a new chemical and engineering approach of chemistry and engineering, dedicated to make manufacturing processes and our world as a whole more sustainable world with a growing tendency. "Green chemistry" approaches are based on ecofriendly technologies, aiming to reduce or eliminate the use of solvents, or render them efficient and safer. Moreover, this scientific field is devoted to reduction or elimination of prevailing environmental and health threats, which typically accompany chemical products and traditional processes. The present book "Green Chemistry" contains 9 selected chapters, starting with a general introductory chapter on "green chemistry," and covers many recent applications and developments based on the principles of "green chemistry." This book is considered the appropriate way to communicate the advances in green materials and their applications to the scientific community. Chemists, scientists and researchers from related areas, and undergraduates involved in environmental issues and interested in approaches to improve the quality of life could find an inspiring and effective guide by reading this book.




Hydrogen Transfer Reactions


Book Description

The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.




Copper Catalysis in Organic Synthesis


Book Description

The most current information on growing field of copper catalysis Copper Catalysis in Organic Synthesis contains an up-to-date overview of the most important reactions in the presence of copper catalysts. The contributors—noted experts on the topic—provide an introduction to the field of copper catalysis, reviewing its development, scope, and limitations, as well as providing descriptions of various homo- and cross-coupling reactions. In addition, information is presented on copper-catalyzed C–H activation, amination, carbonylation, trifluoromethylation, cyanation, and click reactions. Comprehensive in scope, the book also describes microwave-assisted and multi-component transformations as well as copper-catalyzed reactions in green solvents and continuous flow reactors. The authors highlight the application of copper catalysis in asymmetric synthesis and total synthesis of natural products and heterocycles as well as nanocatalysis. This important book: Examines copper and its use in organic synthesis as a more cost-effective and sustainable for researchers in academia and industry Offers the first up-to-date book to explore copper as a first line catalyst for many organic reactions Presents the most significant developments in the area, including cross-coupling reactions, C–H activation, asymmetric synthesis, and total synthesis of natural products and heterocycles Contains over 20 contributions from leaders in the field Written for catalytic chemists, organic chemists, natural products chemists, pharmaceutical chemists, and chemists in industry, Copper Catalysis in Organic Synthesis offers a book on the growing field of copper catalysis, covering cross-coupling reactions, C–H activation, and applications in the total synthesis of natural products.




Green Chemistry Applications


Book Description

Green chemistry is defined as the use of a dozen principles that reduce or eliminate hazardous materials in the design, manufacture, and use of chemical products. Today, it is understood that focusing on precautions to reduce or eliminate existing pollution sources is more effective than looking for a cleaning path after exiting. This book presents the principles of green chemistry for clean production in light of the latest technological developments and increasing environmental awareness. Chapters cover such topics as synthesis and applications of nanomaterials for energy and environmental applications, climate process, alternative green energy sources, and removal of emerging pollutants from water.




Advances in Triazole Chemistry


Book Description

Advances in Triazole Chemistry reviews the ever-widening scope of triazole chemistry. Triazole is an exceptional structural motif with a range of applications across scientific disciplines, including materials science, organocatalysis, agrochemicals, and medicinal chemistry. These many applications of different classes of triazoles have promoted the development of a range of synthetic strategies over the past few years, which are presented here along with recent and ecofriendly methods for the synthesis of all types of triazoles. The book also reviews the recent notable applications in chemical ligation, peptidomimetics, carbohydrate chemistry, nanotechnology, and polymer and materials science. This comprehensive resource is ideal for researchers using triazoles in various disciplines, as well as chemists working in the pharmaceutical, polymer, and agrochemical industries. - Includes coverage of the role triazoles play in DNA synthesis - Features comprehensive information on 1,2,3-triazoles and 1,2,4-triazoles and their subclasses, synthesis, and applications - Serves as an ideal reference for researchers and chemists interested in using triazole chemistry for functionalization, modification, and development of target products