Synthesis of Clustered ST-Antigens for the Development of Novel Breast Cancer Vaccines


Book Description

The development of efficient routes for the preparation of complex oligosaccharide or carbohydrate conjugates has been our immediate purpose. A more global goal would be that of recruiting the immune system to respond to malignant lesions. In our continuing chemical studies, we have undertaken to develop synthetic methodology of general applicability for the preparation of carbohydrates, in the form of glycolipids and glycopeptides, which mimic components of the accessible cell surface of tumor cells. The report herein focuses on successful syntheses of mucin related 0-linked glycopeptides, in particular the TF and 2,3-STF antigens. TF is observed on a variety of epithelial tumors and 2,3-STF is observed on a large number of breast tumors.




A Solid Support Synthesis and Novel Conjugation Methods of Breast Tumor Associated Antigen: Toward the Development of Cancer Vaccines


Book Description

The immunological study of globo-H, a breast tumor associated carbohydrate antigen, has been producing promising results. As the demand for this antigen grows, the efficient production has become an urgent problem. We have been trying to solve this problem via two approaches: the development of a more efficient conjugation method and the solid phase synthesis of globo-H.A solution to the conjugation problem, new method utilizing MMCCH linker, was developed to significantly improve the coupling of synthetic glycosides to the carrier protein. As for solid phase synthesis of globo-H, much insight has been gained on glycosidations on solid support, while the synthesis is still in progress. As a result, the trisaccharide intermediate of globo-H was successfully synthesized on the solid support, thus resulted in overall improvement in the synthetic efficiency.




Lipid A in Cancer Therapy


Book Description

Cancer remains a major challenge for modern society. Not only does cancer rank among the first three causes of mortality in most population groups but also the therapeutic options available for most tumor types are limited. The existing ones have limited efficacy, lack specificity and their administration carry major side effects. Hence the urgent need for novel cancer therapies. One of the most promising avenues in research is the use of specific immunotherapy. The notion that the immune system may have important anti-tumor effects has been around for more than a century now. Every major progress in microbiology and immunology has been immediately followed by attempts to apply the new knowledge to the treatment of cancer. Progress has reached a point where it is well established that most cancer patients mount specific T cell responses against their tumors. The molecular identity of the antigens recognized by anti-tumor T cells has been elucidated and several hundreds of tumor-derived antigenic peptides have been discovered. Upon recognition of such peptides presented by self MHC molecules, both CD8 and CD4 T cells are activated, expand to high numbers and differentiate into effective anti-tumor agents. CD8 T cells directly destroy tumor cells and can cause even large tumors to completely regress in experimental mouse models. These observations have spurred intense research activity aimed at designing and testing cancer vaccines. Over 100 years ago Coley successfully used intratumoral injection of killed bacteria to treat sarcomas. The important anti-tumor effects observed in a fraction of these patients fueled major research efforts. These led to major discoveries in the 80s and the 90s. It turns out that bacterial lipopolysaccharides stimulate the production of massive amounts of a cytokine still known today as tumor necrosis factor (TNF-a). They do so by engagement of a rather complex set of interactions culminating in the ligation of a Toll-like receptor, TLR -4. Ensuing signaling through this receptor initiates potent innate immune responses. Unfortunately the clinical use of both TNF-a and LPS can not be generalized due to their very narrow therapeutic margin. Importantly, synthetic Lipid A analogs have been identified that retain useful bioactivity and yet possess only mild toxicity. The relatively large body of information accumulated thus far on the molecular and cellular interactions set in motion by administration of LPS as well as by the synthetic lipid A analogs allow to place this family of bacterially-derived molecules at the crossroads between innate and adaptive immunity. By virtue of this key position, the therapeutic applications being pursued aim at using these compounds either as direct anti-tumor agents or as vaccine adjuvants. The clinical experience acquired so far on these two avenues is asymmetric. Few clinical trials using Lipid A analogs as single anti-cancer agents involving less than 100 patients with advanced cancer have been reported. In contrast, lipid A has been tested in over 300,000 individuals in various vaccines trials, including therapeutic cancer vaccines. Clearly most of the work needed to develop lipid A as effective anti-cancer agents and/or as vaccine adjuvant lies ahead in the near future. This book is a timely contribution and provides a much needed up-to-date overview of the chemical, biological and physiological aspects of lipid A. It should be a beacon to all those involved in this field of research.




Comparative Oncology


Book Description




Carbohydrate Antigens


Book Description

Developed from a symposium at the Fourth Chemical Congress of North America (202nd National Meeting of the ACS) in New York City, August 1991, chapter-papers present research on topics including how proteins recognize and bind oligosaccharides, synthesis and immunological properties of glycopeptide T-cell determinants, Vibrio cholerae polysaccharide studies, and purification of oligosaccharide antigens by weak affinity chromatography. Annotation copyright by Book News, Inc., Portland, OR




Essentials of Glycobiology


Book Description

Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.




Novel Technologies for Vaccine Development


Book Description

This book presents a detailed overview of the development of new viral vector-based vaccines before discussing two major applications: preventive vaccines for infectious diseases and therapeutic cancer vaccines. Viral vector-based vaccines hold a great potential for development into successful pharmaceutical products and several examples at the advanced pre-clinical or clinical stage are presented. Nevertheless, the most efforts were focused on novel and very innovative technologies for new generation of vector-based vaccines. Furthermore, specific topics such as delivery and adjuvant and protection strategies for cell-mediated-based vaccines are presented. Given its scope, the book is a “must read” for all those involved in vaccine development, both in academia and industrial vaccine development.




Cancer Vaccines and Immunotherapy


Book Description

Rapid progress in the definition of tumor antigens, and improved immunization methods, bring effective cancer vaccines within reach. In this wide-ranging survey, leading clinicians and scientists review therapeutic cancer vaccine strategies against a variety of diseases and molecular targets. Intended for an interdisciplinary readership, their contributions cover the rationale, development, and implementation of vaccines in human cancer treatment, with specific reference to cancer of the cervix, breast, colon, bladder, and prostate, and to melanoma and lymphoma. They review target identification, delivery vectors and clinical trial design. The book begins and ends with lucid overviews from the editors, that discuss the most recent developments.




Carbohydrate-based Vaccines


Book Description

This book is the first of its kind entirely dedicated to carbohydrate vaccines written by renowned scientists with expertise in carbohydrate chemistry and immunochemistry. It covers the synthesis of carbohydrate antigens related to bacteria and parasites such as: Heamophilus influenza, Streptococcus pnemoniae, Shigella flexneri, Candida albicans, Mycobacterium tuberculosis, and Chlamydia. The first three chapters are of wide interest as they cover fundamental concerns in new vaccine developments. The first one presents the immune system and how carbohydrate antigens are processed before protective antibodies are produced. It also illustrates antigen presentation in the context of major histocompatibility complexes (MHCs). The second chapter describes regulatory issues when carbohydrate vaccines are involved while the third one discuss several techniques used in conjugation chemistry and the implication of certain chemical linkages that may induce unexpected anti-linker antibodies. This section will be particularly appealing for those involved in drug-conjugate design, pro-drug developments, and drug vectorization. The book concludes with one chapter that illustrates the principle through which peptide antigens can functionally mimic carbohydrate epitopes, thus, unraveling the potential for peptide surrogates as replacement for complex carbohydrate structures. This book is unique in that it covers all aspects related to carbohydrate vaccines including the success story with the first semi-synthetic bacterial polysaccharide vaccine against Heamophilus influenza type b responsible for pneumonia and meningitis, liable for more than 600,000 infant deaths worldwide in developing countries. The book also presents regulatory issues and will thus be vital for government agencies approving candidate vaccines. It widely covers synthetic methodologies for the attachment of carbohydrate antigens to peptides and immunogenic protein carriers. Vaccines against bacterial antigens, cancer, and parasites are also discussed by worldwide experts in this field in details. No other book contains such a wide panel of different expertise. It will also be useful to students and researchers involved with the immunology of forreings antigens and how the under appreciated carbohydrate antigens are processed by the immune system.




Immunization Safety Review


Book Description

By two years of age, healthy infants in the United States can receive up to 20 vaccinations to protect against 11 diseases. Although most people know that vaccines effectively protect against serious infectious diseases, approximately one-quarter of parents in a recent survey believe that infants get more vaccines than are good for them, and that too many immunizations could overwhelm an infant's immune system. The Immunization Safety Review Committee reviewed the evidence regarding the hypothesis that multiple immunizations increase the risk for immune dysfunction. Specifically, the committee looked at evidence of potential biological mechanisms and at epidemiological evidence for or against causality related to risk for infections, the autoimmune disease type 1 diabetes, and allergic disorders.