Synthesis, Properties and Applications of Ferrocene-based Derivatives, Polymers and Hydrogels


Book Description

After an introduction to their fundamentals and history, this book systematically reviews ferrocene-based compounds, polymers and hydrogels. It explains in detail the synthetic methods for and properties of each ferrocene-based compound, polymer and hydrogel, and also extensively discusses their applications, including electrochemistry, catalysis and sensors. An outlook chapter on remaining challenges and future perspectives rounds out the coverage. Providing a wealth of valuable information on ferrocene-related studies, the book appeals to researchers, professionals and graduate students working in the fields of organic and polymer chemistry, as well as materials science.




Polymeric Adsorbents


Book Description

Polymeric Adsorbents: Characterization, Properties, Applications, and Modelling offers comprehensive information on the various types of polymeric adsorbents and uses, enabling the reader to understand, identify and prepare adsorbents with the required structure and properties for a range of key industrial applications. The book presents the various types of polymeric adsorbents and their characteristics, focuses on physicochemical properties, synthesis methods, functionalization, and composites and hybrid materials, and highlights key application areas, including gas adsorption, heavy metal removal, hazardous dye removal, and adsorption of antibiotics. Finally, the book provides detailed guidance on modeling of polymeric adsorbent behavior and molecular dynamic (MD) simulation. This is a valuable resource to researchers and advanced students across polymer science, chemistry, materials science, engineering, environmental science, and engineers, scientists, and R&D professionals with an interest in polymeric adsorbents for industrial applications. - Covers a full range of polymeric adsorbent types, as well as composites and hybrid adsorbents - Explains chemistry, characterization, functionalization and methods for improving properties - Explores a range of applications supported by detailed coverage of simulation and modeling




Metallo-Supramolecular Polymers


Book Description

This book introduces the synthesis, electrochemical and photochemical properties, and device applications of metallo-supramolecular polymers, new kinds of polymers synthesized by the complexation of metal ions and organic ditopic ligands. Their electrochemical and photochemical properties are also interesting and much different from conventional organic polymers. The properties come from the electronic intra-chain interaction between the metal ions and the ligands in the polymer chain. In this book, for example, the electrochromism that the Fe(II)-based metallo-supramolecular polymer exhibits is described: the blue color of the polymer film disappears by the electrochemical oxidation of Fe(II) ions to Fe(III) and the colorless film becomes blue again by the electrochemical reduction of Fe(III) to Fe(II). The electrochromism is explained by the disappearance/appearance of the metal-to-ligand charge transfer absorption. The electrochromic properties are applicable to display devices such as electronic paper and smart windows.




Synthetic Metal-Containing Polymers


Book Description

The development of the field of synthetic metal-containing polymers - where metal atoms form an integral part of the main chain or side group structure of a polymer - aims to create new materials which combine the processability of organic polymers with the physical or chemical characteristics associated with the metallic element or complex. This book covers the major developments in the synthesis, properties, and applications of synthetic metal-containing macromolecules, and includes chapters on the preparation and characterization of metal-containing polymers, metallocene-based polymers, rigid-rod organometallic polymers, coordination polymers, polymers containing main group metals, and also covers dendritic and supramolecular systems. The book describes both polymeric materials with metals in the main chain or side group structure and covers the literature up to the end of 2002.




Polymer Brushes


Book Description

Polymer Brushes: Substrates, Technologies, and Properties covers various aspects of polymer brush technology, including synthesis, properties, performance, and applications. It presents both experimental details and theoretical insights to enable a better understanding of the brush system. After an overview of polymer brush systems, the book discusses methods for grafting organic brushes from the surface of clay platelets and for the covalent grafting of PNIPAm brushes. It then describes ferrocene polymer brushes, nonfouling brushes on poly(ethylene terephthalate) film surfaces, brushes formed on the inner surface of cylindrical pores, and the "zipper brush" approach. The authors examine the use of scanning electrochemical microscopy for analyzing brushes and compare surface-controlled atom transfer radical polymerization and surface-controlled single-electron transfer living radical polymerization. They also explore the application of polymer brushes in the chromatographic separations of viruses and proteins and the suppression of proteins and cell adhesions. The text concludes with a look at how polymer brushes are synthesized by surface-initiated iniferter-mediated polymerization. This book provides a one-stop reference on the various substrates and technologies used to synthesize polymer brushes. The hands-on information in the text will help readers choose the proper synthesis methods and materials for their system.




Progress in Inorganic Chemistry


Book Description

Straight from the frontier of scientific investigation . . . Nowhere is creative scientific talent busier than in the world of inorganic chemistry. And the respected Progress in Inorganic Chemistry series has long served as an exciting showcase for new research in this area. With contributions from internationally renowned chemists, this latest volume reports the most recent advances in the field, providing a fascinating window on the emerging state of the science. "This series is distinguished not only by its scope and breadth, but also by the depth and quality of the reviews." —Journal of the American Chemical Society "[This series] has won a deservedly honored place on the bookshelf of the chemist attempting to keep afloat in the torrent of original papers on inorganic chemistry." —Chemistry in Britain CONTENTS OF VOLUME 48: Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials (David B. Mitzi, IBM T. J. Watson Research Center, Yorktown Heights, New York). Transition Metals in Polymeric 1 - Conjugated Organic Frameworks (Richard P. Kingsborough and Timothy M. Swager, Massachusetts Institute of Technology, Cambridge, Massachusetts). The Transition Metal Coordination Chemistry of Hemilabile Ligands (Caroline S. Slone, Dana A. Weinberger, and Chad A. Mirkin, Northwestern University, Evanston, Illinois). Organometallic Fluorides of the Main Group Metals Containing the C-M-F Fragment (Balaji R. Jagirdar, Eamonn F. Murphy, and Herbert W. Roesky, Universität Göttingen, Germany). Coordination Complex Impregnated Molecular Sieves-Synthesis, Characterization, Reactivity, and Catalysis (Partha P. Paul, Southwest Research Institute, San Antonio, Texas). Advances in Metal Boryl and Metal-Mediated B-X Activation Chemistry (Milton R. Smith III, Michigan State University, East Lansing, Michigan).




Lanthanide Single Molecule Magnets


Book Description

This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions. Jinkui Tang is a professor at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. Peng Zhang is currently pursuing his PhD at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, with a specific focus on the molecular magnetism of lanthanide compounds under the supervision of Prof. Jinkui Tang.




Smart Inorganic Polymers


Book Description

Provides complete and undiluted knowledge on making inorganic polymers functional. This comprehensive book reflects the state of the art in the field of inorganic polymers, based on research conducted by a number of internationally leading research groups working in this area. It covers the synthesis aspects of synthetic inorganic polymers and looks at multiple inorganic monomers as building blocks, which exhibit unprecedented electronic, redox, photo-emissive, magnetic, self-healing and catalytic properties. It also looks at the applications of inorganic polymers in areas such as optoelectronics, energy storage, industrial chemistry, and biology. Beginning with an overview of the use of smart inorganic polymers in daily life, Smart Inorganic Polymers: Synthesis, Properties and Emerging Applications in Materials and Life Sciences goes on to study the synthesis, properties, and applications of polymers incorporating different heteroelements such as boron, phosphorus, silicon, germanium, and tin. The book also examines inorganic polymers in flame-retardants, as functional materials, and in biology. An excellent addition to the polymer scientists' and synthetic chemists' toolbox Summarizes the state of the art on how to make and use functional inorganic polymers, from synthesis to applications Edited by the coordinator of a highly funded European community research program (COST action) that focuses specifically on the exploration of inorganic polymers Features contributions from top experts in the field Aimed at academics and industrial researchers in this field, Smart Inorganic Polymers: Synthesis, Properties and Emerging Applications in Materials and Life Sciences will also benefit scientists who want to get a better overview on the state-of-the-art of this rapidly advancing area.




Organometallic Polymers


Book Description

Organometallic Polymers focuses on the synthesis, characterization, and potential applications of organometallic polymers. The discussion is organized around seven themes: vinyl polymerization of organometallic monomers; condensation polymerization of organometallic monomers; polymer-bound catalysts; applications of organotin polymers; developments in organosilicon polymers; phosphonitrile and sulfur nitride polymers; and coordination polymers. This book is comprised of 33 chapters and begins with a general review of polymerized vinyl monomers containing transition metals, as well as the reactivity of such monomers in addition to homo- and copolymerizations. The following chapters explore the participation of the ferrocene nucleus in the polymerization of vinylferrocene and its effect on polymer properties; thermomechanical transitions of ferrocene-containing polymers; photocrosslinkable organometallic polyesters; and supported catalysts for ethylene polymerization. The remaining sections discuss antifouling applications of various tin-containing organometallic polymers; structure and applications of polyphosphazenes and polymeric sulfur nitride; and coordination of inorganic ions to polymers. This monograph will be a useful resource for organic chemists and research workers in the field.




Comprehensive Coordination Chemistry II


Book Description

Comprehensive Coordination Chemistry II (CCC II) is the sequel to what has become a classic in the field, Comprehensive Coordination Chemistry, published in 1987. CCC II builds on the first and surveys new developments authoritatively in over 200 newly comissioned chapters, with an emphasis on current trends in biology, materials science and other areas of contemporary scientific interest.