Synthesis, Functionalization and Surface Treatment of Nanoparticles


Book Description

Synthesis, Functionalization and Surface Treatment of Nanoparticles is an area of crucial importance in the emerging field of nanotechnology. Controlling the surface chemical composition and mastering its modification at the nanometer scale are critical issues for high-added value applications involving nanoparticles. The basic applications of surface functionalization range from altering the wetting or adhesion characteristics and improving the nanoparticles dispersion in matrices to enhancing the catalytic properties and ordering the interfacial region, and such. The creation of specific surface sites on nanoparticles for selective molecular attachment is considered a promising approach for their applications in nanofabrication, nanopatterning, selfassembly, nanosensors, bioprobes, drug delivery, pigments, photocatalysis, LEDs, etc. This book presents novel and improved synthesis methods and approaches for controlling and functionalizing the nanoparticle surfaces to enhance the overall performance of the nanoparticles for targeted applications.







Surface Modified Nanomaterials for Applications in Catalysis


Book Description

Surface Modified Nanomaterials for Applications in Catalysis: Fundamentals, Methods and Applications provides an overview of the different state-of-the-art surface modification methods of nanomaterials and their commercial applications. The main objective of this book is to comprehensively cover the modification of nanomaterial and their fabrication, including different techniques and discussions of present and emerging commercial applications. The book addresses fundamental chemistry concepts as applied to the modification of nanomaterials for applications in energy, catalysis, water remediation, sensors, and more. Characterization and fabrication methodologies are reviewed, along with the challenges of up-scaling of processes for commercial applications. This book is suitable for academics and practitioners working in materials science, engineering, nanotechnology, green chemistry and chemical engineering. Provides an overview of the basic principles of surface modification of nanomaterials Reviews useful fabrication and characterization methodologies for key applications Addresses surface modified nanomaterials for applications in catalysis, energy, sensor, environment, and more







Biomedical Applications of Nanoparticles


Book Description

Biomedical Applications of Nanoparticles describes the most interesting and investigated biomedical applications of nanoparticles, emphasizing their therapeutic impact. Progress made in the therapy of severe diseases, such as cancer and difficult infections is strictly correlated to the scientific progress and technological development in the field of materials science. Nanoparticles have numerous therapeutic applications, starting with the design of new drugs, delivery systems, therapeutic materials, and their contribution to the development of preventive strategies. The book highlights the impact of nanoparticles on the therapy of infections, antimicrobial effect and also anti-cancer strategies. Successful examples are given throughout the book, along with analysis in order to improve future outcomes of novel therapies. Highlights the term nanotherapeutics and presents several classifications of nanotherapeutics from different points-of-view Presents the recent progress related to nanotherapeutics in the oral cavity Provides the recent progress in the field of biomedical nanoparticles




Applications of Laser Ablation


Book Description

Laser ablation refers to the phenomenon in which a low wavelength and short pulse (ns-fs) duration of laser beam irradiates the surface of a target to induce instant local vaporization of the target material generating a plasma plume consisting of photons, electrons, ions, atoms, molecules, clusters, and liquid or solid particles. This book covers various aspects of using laser ablation phenomenon for material processing including laser ablation applied for the deposition of thin films, for the synthesis of nanomaterials, and for the chemical compositional analysis and surface modification of materials. Through the 18 chapters written by experts from international scientific community, the reader will have access to the most recent research and development findings on laser ablation through original research studies and literature reviews.




Functionalized Nanomaterials


Book Description

Nanomaterials contain some unique properties due to their nanometric size and surface functionalization. Nanomaterial functionalization also affects their compatibility to biocompatibility and toxicity behaviors. environment and living organism. This makes functionalized nanomaterials a material with huge scope and few challenges. This book provides detailed information about the nanomaterial functionalization and their application. Recent advancements, challenges and opportunities in the preparation and applications of functionalized nanomaterials are also highlighted. This book can serve as a reference book for scientific investigators, doctoral and post-doctoral scholars; undergrad and grad. This book is very useful for multidisciplinary researchers, industry personnel’s, journalists, and policy makers. Features: Covers all aspects of Nanomaterial functionalization and its applications Describes and methods of functionalized nanomaterials synthesis for different applications Discusses the challenges, recent findings, and cutting-edge global research trends on functionalization of nanomaterials and its applications It discusses the regulatory frameworks for the safe use of functionalized nanomaterials. It contains contributions from international experts from multiple disciplines.




Plasma based Synthesis and Modification of Nanomaterials


Book Description

This book, entitled “Plasma-Based Synthesis and Modification of Nanomaterials” is a collection of nine original research articles devoted to the application of different atmospheric pressure (APPs) and low-pressure (LPPs) plasmas for the synthesis or modification of various nanomaterials (NMs) of exceptional properties. These articles also show the structural and morphological characterization of the synthesized NMs and their further interesting and unique applications in different areas of science and technology. The readers interested in the capabilities of plasma-based treatments will quickly be convinced that APPs and LPPs enable one to efficiently synthesize or modify differentiated NMs using a minimal number of operations. Indeed, the presented procedures are eco-friendly and usually involve single-step processes, thus considerably lowering labor investment and costs. As a result, the production of new NMs and their functionalization is more straightforward and can be carried out on a much larger scale compared to other methods and procedures involving complex chemical treatments and processes. The size and morphology, as well as the structural and optical properties of the resulting NMs are tunable and tailorable. In addition to the desirable and reproducible physical dimensions, crystallinity, functionality, and spectral properties of the resultant NMs, the NMs fabricated and/or modified with the aid of APPs are commonly ready-to-use prior to their specific applications, without any initial pre-treatments.




Nanoparticles


Book Description

The book summarizes recent advances in methods to synthesize, stabilize, passivate and functionalize diverse nanoparticles from metals, metal oxides, semiconductors, polymers, organics and biomolecules. A wide range of potential appplications with nanoparticles as building blocks are described.




Green Nanomaterials


Book Description

This book comprises a collection of chapters on advances in green nanomaterials. The book looks at ways to establish long‐term safe and sustainable forms of nanotechnology through implementation of nanoparticle biosynthesis with minimum impact on the ecosystem. The book looks at synthesis, processing, and applications of metal and metal oxide nanomaterials and also at bio-nanomaterials. The contents of this book will prove useful for researchers and professionals working in the field of nanomaterials and green technology.