Generative Adversarial Networks with Python


Book Description

Step-by-step tutorials on generative adversarial networks in python for image synthesis and image translation.




Inequalities for Differential and Integral Equations


Book Description

Inequalities for Differential and Integral Equations has long been needed; it contains material which is hard to find in other books. Written by a major contributor to the field, this comprehensive resource contains many inequalities which have only recently appeared in the literature and which can be used as powerful tools in the development of applications in the theory of new classes of differential and integral equations. For researchers working in this area, it will be a valuable source of reference and inspiration. It could also be used as the text for an advanced graduate course. - Covers a variety of linear and nonlinear inequalities which find widespread applications in the theory of various classes of differential and integral equations - Contains many inequalities which have only recently appeared in literature and cannot yet be found in other books - Provides a valuable reference to engineers and graduate students




Engineering Applications of Neural Networks


Book Description

This book constitutes the refereed proceedings of the 23rd International Conference on Engineering Applications of Neural Networks, EANN 2022, held in Chersonisos, Crete, Greece, in June 2022. The 37 revised full papers and 5 revised short papers presented were carefully reviewed and selected from 72 submissions. The papers are organized in topical sections on Bio inspired Modeling / Novel Neural Architectures; Classification / Clustering; Machine Learning; Convolutional / Deep Learning; Datamining / Learning / Autoencoders; Deep Learning / Blockchain; Machine Learning for Medical Images / Genome Classification; Reinforcement /Adversarial / Echo State Neural Networks; Robotics / Autonomous Vehicles, Photonic Neural Networks; Text Classification / Natural Language.







Data Envelopment Analysis (DEA) Methods for Maximizing Efficiency


Book Description

In today's highly competitive and rapidly evolving global landscape, the quest for efficiency has become a crucial factor in determining the success of organizations across various industries. Data Envelopment Analysis (DEA) Methods for Maximizing Efficiency is a comprehensive guide that delves into the powerful mathematical tool of DEA, is designed to assess the relative efficiency of decision-making units (DMUs), and provides valuable insights for performance improvement. This book presents a systematic overview of DEA models and techniques, from fundamental concepts to advanced methods, showcasing their practical applications through real-world examples and case studies. Catering to a broad audience, this book is designed for students, researchers, consultants, decision-makers, and enthusiasts in the field of efficiency analysis and performance measurement. Consultants and practitioners will gain practical insights for applying DEA in various contexts, and decision-makers will be equipped to make informed decisions for maximizing efficiency. Additionally, individuals with a general interest in data analysis and performance measurement will find this book accessible and informative. This book covers a wide range of topics, including mathematical foundations of DEA, DEA models and variations, DEA efficiency and productivity measures, DEA applications in various industries such as healthcare, finance, supply chain management, environmental management, education management, and public sector management.




Hybrid Artificial Intelligent Systems


Book Description

This book constitutes the refereed proceedings of the 18th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2023, held in Salamanca, Spain, during September 5–7, 2023. The 65 full papers included in this book were carefully reviewed and selected from 120 submissions. They were organized in topical sections as follows: ​Anomaly and Fault Detection, Data Mining and Decision Support Systems, Deep Learning, Evolutionary Computation and Optimization, HAIS Applications, Image and Speech Signal Processing, Agents and Multiagents, Biomedical Applicatons.




Graph Representation Learning


Book Description

Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.




GANs in Action


Book Description

Deep learning systems have gotten really great at identifying patterns in text, images, and video. But applications that create realistic images, natural sentences and paragraphs, or native-quality translations have proven elusive. Generative Adversarial Networks, or GANs, offer a promising solution to these challenges by pairing two competing neural networks' one that generates content and the other that rejects samples that are of poor quality. GANs in Action: Deep learning with Generative Adversarial Networks teaches you how to build and train your own generative adversarial networks. First, you'll get an introduction to generative modelling and how GANs work, along with an overview of their potential uses. Then, you'll start building your own simple adversarial system, as you explore the foundation of GAN architecture: the generator and discriminator networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.




Pattern Recognition


Book Description




Discovery Science


Book Description

This book constitutes the proceedings of the 24th International Conference on Discovery Science, DS 2021, which took place virtually during October 11-13, 2021. The 36 papers presented in this volume were carefully reviewed and selected from 76 submissions. The contributions were organized in topical sections named: applications; classification; data streams; graph and network mining; machine learning for COVID-19; neural networks and deep learning; preferences and recommender systems; representation learning and feature selection; responsible artificial intelligence; and spatial, temporal and spatiotemporal data.