Synthetic and Mechanistic Organic Electron Transfer Reactions


Book Description

The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Synthetic and Mechanistic Organic Electron Transfer Reactions¿, held during the 216th meeting of The Electrochemical Society, in Vienna, Austria from October 4 to 9, 2009.




Electron Transfer Reactions in Organic Chemistry


Book Description

The subject of the book is electron transfer reactions in organic chemistry, with the emphasis on mechanistic aspects. The theoretical framework is that of the Marcus theory, well-known from its extensive use in inorganic chemistry. The book deals with definitions of electron transfer, theory of electron transfer reactions (Marcus' and Pross-Shaik's approach) experimental diagnosis of electron transfer reactions, examples from inorganic/organic reactants and purely organic reactants, electro- and photochemical electron transfer, electron transfer catalyzed reactions, connections between electron transfer and polar mechanisms, and applications of electron transfer, such as electrosynthesis of organic chemicals, photochemical energy storage, conducting organic materials and chemiluminescence. The approach is new in so far as no comparable book has been published. The book will be of value to anyone interested in keeping track of developments in physical organic chemistry.




Photoinduced Electron Transfer


Book Description

Electron transfer reactions are of great importance to nearly every subdiscipline of chemistry. The simple transfer of a single electron has been shown repeatedly to be a common activating mode for organic, inorganic, and biological molecules, and the very ubiquity of such reactions has guaranteed that their investigation would involve the most fundamental questions of modern chemistry. The fact that photoexcitation induces enhanced redox reactivity via electron transfer also provides a convenient method for experimentally testing theoretical predictions regarding structural and energetic effects. As can be seen from the very size of this work there is a great deal known about photoinduced electron transfer reactions and the editors have tried to capture the diversity and excitement inherent in this broad field. The reader will find contributions from theorists and experimentalists, from organic and inorganic chemists, from the perspective of the synthetic and mechanistic viewpoint. Some contributions are fundamental basic research, while others clearly show practical applications of these principles.These volumes are intended to serve a joint purpose: as a reference resource and an introductory overview to the diverse research accomplished via photoexcitation of electron donor-acceptor systems. The information is organized in four parts. The first deals with the theoretical and conceptual factors which influence electron transfer. The second covers experimental methodology and medium effects. The third and fourth deal with reactivity, with most organic transformation being addressed in Part C and most inorganic reactions covered in Part D. Each part thus provides an overview of typical reactions observed for these classes of compounds. Part D also provides examples of photoinduced electron transfer in current use in important applications. There is of course a significant interdependence between the four parts. Subject, chemical, and author citation indices appear at the end of each of Parts A, B and C, and comprehensive indices are included in Part D.




Electron Transfer Reactions in Organic Chemistry


Book Description

The subject of the book is electron transfer reactions in organic chemistry, with the emphasis on mechanistic aspects. The theoretical framework is that of the Marcus theory, well-known from its extensive use in inorganic chemistry. The book deals with definitions of electron transfer, theory of electron transfer reactions (Marcus' and Pross-Shaik's approach) experimental diagnosis of electron transfer reactions, examples from inorganic/organic reactants and purely organic reactants, electro- and photochemical electron transfer, electron transfer catalyzed reactions, connections between electron transfer and polar mechanisms, and applications of electron transfer, such as electrosynthesis of organic chemicals, photochemical energy storage, conducting organic materials and chemiluminescence. The approach is new in so far as no comparable book has been published. The book will be of value to anyone interested in keeping track of developments in physical organic chemistry.




Organic Redox Chemistry


Book Description

Organic Redox Chemistry Explore the most recent advancements and synthesis applications in redox chemistry Redox chemistry has emerged as a crucial research topic in synthetic method development. In Organic Redox Chemistry: Chemical, Photochemical and Electrochemical Syntheses, some key researchers in this field, including editors Dr. Frédéric W. Patureau and the late Dr. Jun-Ichi Yoshida, deliver an insightful exploration of this rapidly developing topic. This book highlights electron transfer processes in synthesis by using different techniques to initiate them, allowing for a multi-directional perspective in organic redox chemistry. Covering a wide array of the important and recent developments in the field, Organic Redox Chemistry will earn a place in the libraries of chemists seeking a one-stop resource that compares chemical, photochemical, and electrochemical methods in organic synthesis.







Synthetic Organic Electrochemistry


Book Description

An introduction to electrochemical methods and their use in the synthetic laboratory. Covers the major organic electrochemical pathways of synthetic interest, while de-emphasizing the mechanistic literature. For each functional group covered, the essential features of its electrochemical behavior are outlined, including the presumed intermediates. This Second Edition has been revised, covering the literature through early 1988, and presents useful electrochemical reactions superior to, and, in some cases, without counterparts in, conventional chemical methods.




The Investigation of Organic Reactions and Their Mechanisms


Book Description

A range of alternative mechanisms can usually be postulated for most organic chemical reactions, and identification of the most likely requires detailed investigation. Investigation of Organic Reactions and their Mechanisms will serve as a guide for the trained chemist who needs to characterise an organic chemical reaction and investigate its mechanism, but who is not an expert in physical organic chemistry. Such an investigation will lead to an understanding of which bonds are broken, which are made, and the order in which these processes happen. This information and knowledge of the associated kinetic and thermodynamic parameters are central to the development of safe, efficient, and profitable industrial chemical processes, and to extending the synthetic utility of new chemical reactions in chemical and pharmaceutical manufacturing, and academic environments. Written as a coherent account of the principal methods currently used in mechanistic investigations, at a level accessible to academic researchers and graduate chemists in industry, the book is highly practical in approach. The contributing authors, an international group of expert practitioners of the techniques covered, illustrate their contributions by examples from their own research and from the relevant wider chemical literature. The book covers basic aspects such as product analysis, kinetics, catalysis, and investigation of reactive intermediates. It also includes material on significant recent developments, e.g. computational chemistry, calorimetry, and electrochemistry, in addition to topics of high current industrial relevance, e.g. reactions in multiphase systems, and synthetically useful reactions involving free radicals and catalysis by organometallic compounds.




Photoinduced Electron Transfer


Book Description

Electron transfer reactions are of great importance to nearly every subdiscipline of chemistry. The simple transfer of a single electron has been shown repeatedly to be a common activating mode for organic, inorganic, and biological molecules, and the very ubiquity of such reactions has guaranteed that their investigation would involve the most fundamental questions of modern chemistry. The fact that photoexcitation induces enhanced redox reactivity via electron transfer also provides a convenient method for experimentally testing theoretical predictions regarding structural and energetic effects. As can be seen from the very size of this work there is a great deal known about photoinduced electron transfer reactions and the editors have tried to capture the diversity and excitement inherent in this broad field. The reader will find contributions from theorists and experimentalists, from organic and inorganic chemists, from the perspective of the synthetic and mechanistic viewpoint. Some contributions are fundamental basic research, while others clearly show practical applications of these principles.These volumes are intended to serve a joint purpose: as a reference resource and an introductory overview to the diverse research accomplished via photoexcitation of electron donor-acceptor systems. The information is organized in four parts. The first deals with the theoretical and conceptual factors which influence electron transfer. The second covers experimental methodology and medium effects. The third and fourth deal with reactivity, with most organic transformation being addressed in Part C and most inorganic reactions covered in Part D. Each part thus provides an overview of typical reactions observed for these classes of compounds. Part D also provides examples of photoinduced electron transfer in current use in important applications. There is of course a significant interdependence between the four parts. Subject, chemical, and author citation indices appear at the end of each of Parts A, B and C, and comprehensive indices are included in Part D.




Electron Transfer in Chemistry, Principles, Theories, Methods, and Techniques


Book Description

Electron transfer is the most important process to take place in natural and artificial chemical systems, playing a fundamental role, for example, in photosynthesis as well as in photography. Electron transfer reactions - oxidations and reductions - are involved in, among others, a variety of energy conversion processes, analytical methods, synthetic strategies, and information processing systems. This five-volume work is the only comprehensive yet up-to-date reference on electron transfer processes. Following a foreword by Nobel prize-winner R. A. Marcus, renowned experts from all over the world provide an interdisciplinary overview of every aspect of electron transfer including theoretical-physicochemical backgrounds, latest analytical techniques to identify, monitor and measure the rate of electron transfer, utilizing electron transfer reactions in organic synthesis and catalysis, electron transfer in the gas phase or in special heterogeneous systems such as zeolites or sensitized electrodes. Other central issues are the study of biological systems and the biomimetic electron transfer processes in artificial supramolecular systems. Finally, a complete volume is dedicated to the application of electron transfer in molecular-level electronics, imaging processes and energy conversion. Each chapter is complemented by numerous tables, formulae and illustrations providing an indispensable wealth of information. All references are cross-indexed throughout the work for easy access to this highly complex topic. Whether for quickly looking-up a keyword or as a thorough introduction to a special aspect, this is an essential handbook for everyone working in the field, from experts to postgraduates, from synthetic chemists, physicochemists or biochemists to research groups in material sciences.