Diagnostic Ultrasound


Book Description

All healthcare professionals practising ultrasound in a clinical setting should receive accredited training in the principles and practice of ultrasound scanning. This second edition of Diagnostic Ultrasound: Physics and Equipment provides a comprehensive introduction to the physics, technology and safety of ultrasound equipment, with high quality ultrasound images and diagrams throughout. It covers all aspects of the field at a level intended to meet the requirements of UK sonography courses. New to this edition: • Updated descriptions of ultrasound technology, quality assurance and safety. • Additional chapters dedicated to 3D ultrasound, contrast agents and elastography. • New glossary containing definitions of over 500 terms. The editors and contributing authors are all authorities in their areas, with contributions to the scientific and professional development of ultrasound at national and international level.




Handbook on Array Processing and Sensor Networks


Book Description

A handbook on recent advancements and the state of the art in array processing and sensor Networks Handbook on Array Processing and Sensor Networks provides readers with a collection of tutorial articles contributed by world-renowned experts on recent advancements and the state of the art in array processing and sensor networks. Focusing on fundamental principles as well as applications, the handbook provides exhaustive coverage of: wavelets; spatial spectrum estimation; MIMO radio propagation; robustness issues in sensor array processing; wireless communications and sensing in multi-path environments using multi-antenna transceivers; implicit training and array processing for digital communications systems; unitary design of radar waveform diversity sets; acoustic array processing for speech enhancement; acoustic beamforming for hearing aid applications; undetermined blind source separation using acoustic arrays; array processing in astronomy; digital 3D/4D ultrasound imaging technology; self-localization of sensor networks; multi-target tracking and classification in collaborative sensor networks via sequential Monte Carlo; energy-efficient decentralized estimation; sensor data fusion with application to multi-target tracking; distributed algorithms in sensor networks; cooperative communications; distributed source coding; network coding for sensor networks; information-theoretic studies of wireless networks; distributed adaptive learning mechanisms; routing for statistical inference in sensor networks; spectrum estimation in cognitive radios; nonparametric techniques for pedestrian tracking in wireless local area networks; signal processing and networking via the theory of global games; biochemical transport modeling, estimation, and detection in realistic environments; and security and privacy for sensor networks. Handbook on Array Processing and Sensor Networks is the first book of its kind and will appeal to researchers, professors, and graduate students in array processing, sensor networks, advanced signal processing, and networking.




Ultrafast Ultrasound Imaging


Book Description

This book is a printed edition of the Special Issue "Ultrafast Ultrasound Imaging" that was published in Applied Sciences




Diagnostic Ultrasound Imaging: Inside Out


Book Description

Diagnostic Ultrasound Imaging provides a unified description of the physical principles of ultrasound imaging, signal processing, systems and measurements. This comprehensive reference is a core resource for both graduate students and engineers in medical ultrasound research and design. With continuing rapid technological development of ultrasound in medical diagnosis, it is a critical subject for biomedical engineers, clinical and healthcare engineers and practitioners, medical physicists, and related professionals in the fields of signal and image processing. The book contains 17 new and updated chapters covering the fundamentals and latest advances in the area, and includes four appendices, 450 figures (60 available in color on the companion website), and almost 1,500 references. In addition to the continual influx of readers entering the field of ultrasound worldwide who need the broad grounding in the core technologies of ultrasound, this book provides those already working in these areas with clear and comprehensive expositions of these key new topics as well as introductions to state-of-the-art innovations in this field. - Enables practicing engineers, students and clinical professionals to understand the essential physics and signal processing techniques behind modern imaging systems as well as introducing the latest developments that will shape medical ultrasound in the future - Suitable for both newcomers and experienced readers, the practical, progressively organized applied approach is supported by hands-on MATLAB® code and worked examples that enable readers to understand the principles underlying diagnostic and therapeutic ultrasound - Covers the new important developments in the use of medical ultrasound: elastography and high-intensity therapeutic ultrasound. Many new developments are comprehensively reviewed and explained, including aberration correction, acoustic measurements, acoustic radiation force imaging, alternate imaging architectures, bioeffects: diagnostic to therapeutic, Fourier transform imaging, multimode imaging, plane wave compounding, research platforms, synthetic aperture, vector Doppler, transient shear wave elastography, ultrafast imaging and Doppler, functional ultrasound and viscoelastic models




Advanced Signal Processing


Book Description

Discover the Applicability, Benefits, and Potential of New Technologies As advances in algorithms and computer technology have bolstered the digital signal processing capabilities of real-time sonar, radar, and non-invasive medical diagnostics systems, cutting-edge military and defense research has established conceptual similarities in these areas. Now civilian enterprises can use government innovations to facilitate optimal functionality of complex real-time systems. Advanced Signal Processing details a cost-efficient generic processing structure that exploits these commonalities to benefit commercial applications. Learn from a Renowned Defense Scientist, Researcher, and Innovator The author preserves the mathematical focus and key information from the first edition that provided invaluable coverage of topics including adaptive systems, advanced beamformers, and volume visualization methods in medicine. Integrating the best features of non-linear and conventional algorithms and explaining their application in PC-based architectures, this text contains new data on: Advances in biometrics, image segmentation, registration, and fusion techniques for 3D/4D ultrasound, CT, and MRI Fully digital 3D/ (4D: 3D+time) ultrasound system technology, computing architecture requirements, and relevant implementation issues State-of-the-art non-invasive medical procedures, non-destructive 3D tomography imaging and biometrics, and monitoring of vital signs Cardiac motion correction in multi-slice X-ray CT imaging Space-time adaptive processing and detection of targets interference-intense backgrounds comprised of clutter and jamming With its detailed explanation of adaptive, synthetic-aperture, and fusion-processing schemes with near-instantaneous convergence in 2-D and 3-D sensors (including planar, circular, cylindrical, and spherical arrays), the quality and illustration of this text’s concepts and techniques will make it a favored reference.




A Study into the Design of Steerable Microphone Arrays


Book Description

The book covers the design formulations for broadband beamformer targeting nearfield and farfield sources. The book content includes background information on the acoustic environment, including propagation medium, the array geometries, signal models and basic beamformer designs. Subsequently it introduces design formulation for nearfield, farfield and mixed nearfield-farfield beamformers and extends the design formulation into electronically steerable beamformers. In addition, a robust formulation is introduced for all the designs mentioned.




Foundations of Biomedical Ultrasound


Book Description

Foundations of Biomedical Ultrasound provides a thorough and detailed treatment of the underlying physics and engineering of medical ultrasound practices. It covers the fundamental engineering behind ultrasound equipment, properties of acoustic wave motion, the behavior of waves in various media, non-linear waves and the creation of images. The most comprehensive book on the subject, Foundations of Biomedical Ultrasound is an indispensable reference for any medical professional working with ultrasound imaging, and a comprehensive introduction to the subject for students. The author has been researching and teaching biomedical ultrasonics at the University of Toronto for the past 25 years.




Synthetic Aperture Radar


Book Description

Radar, like most well developed areas, has its own vocabulary. Words like Doppler frequency, pulse compression, mismatched filter, carrier frequency, in-phase, and quadrature have specific meaning to the radar engineer. In fact, the word radar is actually an acronym for RAdio Detection And Rang ing. Even though these words are well defined, they can act as road blocks which keep people without a radar background from utilizing the large amount of data, literature, and expertise within the radar community. This is unfortunate because the use of digital radar processing techniques has made possible the analysis of radar signals on many general purpose digi tal computers. Of special interest are the surface mapping radars, such as the Seasat and the shuttle imaging radars, which utilize a technique known as synthetic aperture radar (SAR) to create high resolution images (pic tures). This data appeals to cartographers, agronomists, oceanographers, and others who want to perform image enhancement, parameter estima tion, pattern recognition, and other information extraction techniques on the radar imagery. The first chapter presents the basics of radar processing: techniques for calculating range (distance) by measuring round trip propagation times for radar pulses. This is the same technique that sightseers use when calculat ing the width of a canyon by timing the round trip delay using echoes. In fact, the corresponding approach in radar is usually called the pulse echo technique.




Review of Progress in Quantitative Nondestructive Evaluation


Book Description

These Proceedings, consisting of Parts A and B, contain the edited versions of most of the papers presented at the annual Review of Progress in Quantitative Nondestructive Evaluation held at University of San Diego, San Diego, CA, on July 27 to August 1, 1997. The Review was organized by the Center for NDE at Iowa State University, in cooperation with the Ames Laboratory of the USDOE, the American Society of Nondestructive Testing, the National Institute of Standards and Technology, the Federal Aviation Administration, and the National Science Foundation IndustrylUniversity Cooperative Research Centers. This year's Review of Progress in QNDE was attended by approximately 370 participants from the US and many foreign countries who presented a total of approximately 350 papers. As usual, the meeting was divided into 36 sessions with four sessions running concurrently. The Review covered all phases of NDE research and development from fundamental investigations to engineering applications and inspection systems, and methods of inspection science from acoustics to x-rays. The Review continues to experience some fluctuations in size, mostly under pressure from a decrease in funding for NDE research at the US Federal level, but increased participation from foreign laboratories has more than made up the difference. The Review is ideally sized to permit a full-scale overview of the latest developments in a collegial atmosphere that most participants favor. The opening plenary session this year concentrated on advances in imaging technologies and methodologies that have been made in recent years. Dr. K.




Beamforming in Medical Ultrasound Imaging


Book Description

This book deals with the concept of medical ultrasound imaging and discusses array signal processing in ultrasound. Signal processing using different beamforming techniques in order to achieve a desirable reconstructed image and, consequently, obtain useful information about the imaging medium is the main focus of this book. In this regard, the principles of image reconstruction techniques in ultrasound imaging are fully described, and the required processing steps are completely expanded and analyzed in detail. Simulation results to compare the performance of different beamformers are also included in this book to visualize their differences to the reader. Other advanced techniques in the field of medical ultrasound data processing, as well as their corresponding recent achievements, are also presented in this book. Simply put, in this book, processing of medical ultrasound data from different aspects and acquiring information from them in different manners are covered and organized in different chapters. Before going through the detailed explanation in each chapter, it gives the reader an overview of the considered issue and focuses his\her mind on the challenge ahead. The contents of the book are also presented in such a way that they are easy for the reader to understand. This book is recommended for researchers who study medical ultrasound data processing.