Ultrasound B-mode Imaging: Beamforming and Image Formation Techniques


Book Description

Ultrasound medical imaging stands out among the other diagnostic imaging modalities for its patient-friendliness, high temporal resolution, low cost, and absence of ionizing radiation. On the other hand, it may still suffer from limited detail level, low signal-to-noise ratio, and narrow field-of-view. In the last decade, new beamforming and image reconstruction techniques have emerged which aim at improving resolution, contrast, and clutter suppression, especially in difficult-to-image patients. Nevertheless, achieving a higher image quality is of the utmost importance in diagnostic ultrasound medical imaging, and further developments are still indispensable. From this point of view, a crucial role can be played by novel beamforming techniques as well as by non-conventional image formation techniques (e.g., advanced transmission strategies, and compounding, coded, and harmonic imaging). This Special Issue includes novel contributions on both ultrasound beamforming and image formation techniques, particularly addressed at improving B-mode image quality and related diagnostic content. This indeed represents a hot topic in the ultrasound imaging community, and further active research in this field is expected, where many challenges still persist.




Beamforming in Medical Ultrasound Imaging


Book Description

This book deals with the concept of medical ultrasound imaging and discusses array signal processing in ultrasound. Signal processing using different beamforming techniques in order to achieve a desirable reconstructed image and, consequently, obtain useful information about the imaging medium is the main focus of this book. In this regard, the principles of image reconstruction techniques in ultrasound imaging are fully described, and the required processing steps are completely expanded and analyzed in detail. Simulation results to compare the performance of different beamformers are also included in this book to visualize their differences to the reader. Other advanced techniques in the field of medical ultrasound data processing, as well as their corresponding recent achievements, are also presented in this book. Simply put, in this book, processing of medical ultrasound data from different aspects and acquiring information from them in different manners are covered and organized in different chapters. Before going through the detailed explanation in each chapter, it gives the reader an overview of the considered issue and focuses his\her mind on the challenge ahead. The contents of the book are also presented in such a way that they are easy for the reader to understand. This book is recommended for researchers who study medical ultrasound data processing.










Ultrasound B-mode Imaging: Beamforming and Image Formation Techniques


Book Description

Ultrasound medical imaging stands out among the other diagnostic imaging modalities for its patient-friendliness, high temporal resolution, low cost, and absence of ionizing radiation. On the other hand, it may still suffer from limited detail level, low signal-to-noise ratio, and narrow field-of-view. In the last decade, new beamforming and image reconstruction techniques have emerged which aim at improving resolution, contrast, and clutter suppression, especially in difficult-to-image patients. Nevertheless, achieving a higher image quality is of the utmost importance in diagnostic ultrasound medical imaging, and further developments are still indispensable. From this point of view, a crucial role can be played by novel beamforming techniques as well as by non-conventional image formation techniques (e.g., advanced transmission strategies, and compounding, coded, and harmonic imaging). This Special Issue includes novel contributions on both ultrasound beamforming and image formation techniques, particularly addressed at improving B-mode image quality and related diagnostic content. This indeed represents a hot topic in the ultrasound imaging community, and further active research in this field is expected, where many challenges still persist.