Biodefense in the Age of Synthetic Biology


Book Description

Scientific advances over the past several decades have accelerated the ability to engineer existing organisms and to potentially create novel ones not found in nature. Synthetic biology, which collectively refers to concepts, approaches, and tools that enable the modification or creation of biological organisms, is being pursued overwhelmingly for beneficial purposes ranging from reducing the burden of disease to improving agricultural yields to remediating pollution. Although the contributions synthetic biology can make in these and other areas hold great promise, it is also possible to imagine malicious uses that could threaten U.S. citizens and military personnel. Making informed decisions about how to address such concerns requires a realistic assessment of the capabilities that could be misused. Biodefense in the Age of Synthetic Biology explores and envisions potential misuses of synthetic biology. This report develops a framework to guide an assessment of the security concerns related to advances in synthetic biology, assesses the levels of concern warranted for such advances, and identifies options that could help mitigate those concerns.




Regenesis


Book Description

A Harvard biologist and master inventor explores how new biotechnologies will enable us to bring species back from the dead, unlock vast supplies of renewable energy, and extend human life. In Regenesis, George Church and science writer Ed Regis explore the possibilities of the emerging field of synthetic biology. Synthetic biology, in which living organisms are selectively altered by modifying substantial portions of their genomes, allows for the creation of entirely new species of organisms. These technologies-far from the out-of-control nightmare depicted in science fiction-have the power to improve human and animal health, increase our intelligence, enhance our memory, and even extend our life span. A breathtaking look at the potential of this world-changing technology, Regenesis is nothing less than a guide to the future of life.




Mammalian Synthetic Biology


Book Description

This primer introduces the challenges and opportunities of applying synthetic biological techniques to mammalian cells, tissues, and organisms. It covers the special features that make engineering mammalian systems different from engineering bacteria, fungi, and plants, and provides an overview of current techniques. A variety of cutting-edge examples illustrate the different purposes of mammalian synthetic biology, including pure biomedical research, drug production, tissue engineering, and regenerative medicine.




Industrialization of Biology


Book Description

The tremendous progress in biology over the last half century - from Watson and Crick's elucidation of the structure of DNA to today's astonishing, rapid progress in the field of synthetic biology - has positioned us for significant innovation in chemical production. New bio-based chemicals, improved public health through improved drugs and diagnostics, and biofuels that reduce our dependency on oil are all results of research and innovation in the biological sciences. In the past decade, we have witnessed major advances made possible by biotechnology in areas such as rapid, low-cost DNA sequencing, metabolic engineering, and high-throughput screening. The manufacturing of chemicals using biological synthesis and engineering could expand even faster. A proactive strategy - implemented through the development of a technical roadmap similar to those that enabled sustained growth in the semiconductor industry and our explorations of space - is needed if we are to realize the widespread benefits of accelerating the industrialization of biology. Industrialization of Biology presents such a roadmap to achieve key technical milestones for chemical manufacturing through biological routes. This report examines the technical, economic, and societal factors that limit the adoption of bioprocessing in the chemical industry today and which, if surmounted, would markedly accelerate the advanced manufacturing of chemicals via industrial biotechnology. Working at the interface of synthetic chemistry, metabolic engineering, molecular biology, and synthetic biology, Industrialization of Biology identifies key technical goals for next-generation chemical manufacturing, then identifies the gaps in knowledge, tools, techniques, and systems required to meet those goals, and targets and timelines for achieving them. This report also considers the skills necessary to accomplish the roadmap goals, and what training opportunities are required to produce the cadre of skilled scientists and engineers needed.




TSCA


Book Description




Synthetic Biology


Book Description

Synthetic biology is one of the 21st century's fastest growing fields of research, as important for technology as for basic science. Building on traditional genetic engineering, which was restricted to changing one or two genes, synthetic biology uses multi-gene modules and pathways to make very significant changes to what cells can do. Synthetic biologists aim to have an impact in fields as diverse as drug manufacture, biofuel production, tackling pollution, and medical diagnostics. Further ahead, synthetic biology may even make possible the long-standing goal of creating new life from non-living starting materials. This Very Short Introduction provides a concise explanation of what synthetic biology is, and how it is beginning to affect many fields of technology. Jamie Davies also discusses the considerable controversies surrounding synthetic biology, from questions over the assumption that engineering concepts can be applied to living systems easily, to scepticism over the claims for commercial promise, fears that the dangers of engineering life are worse than its benefits, and concerns over whether humans should be designing living systems at all. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.




The Science and Applications of Synthetic and Systems Biology


Book Description

Many potential applications of synthetic and systems biology are relevant to the challenges associated with the detection, surveillance, and responses to emerging and re-emerging infectious diseases. On March 14 and 15, 2011, the Institute of Medicine's (IOM's) Forum on Microbial Threats convened a public workshop in Washington, DC, to explore the current state of the science of synthetic biology, including its dependency on systems biology; discussed the different approaches that scientists are taking to engineer, or reengineer, biological systems; and discussed how the tools and approaches of synthetic and systems biology were being applied to mitigate the risks associated with emerging infectious diseases. The Science and Applications of Synthetic and Systems Biology is organized into sections as a topic-by-topic distillation of the presentations and discussions that took place at the workshop. Its purpose is to present information from relevant experience, to delineate a range of pivotal issues and their respective challenges, and to offer differing perspectives on the topic as discussed and described by the workshop participants. This report also includes a collection of individually authored papers and commentary.




Synthetic Biology - a Primer (revised Edition)


Book Description

Synthetic Biology -- A Primer (Revised Edition) presents an updated overview of the field of synthetic biology and the foundational concepts on which it is built. This revised edition includes new literature references, working and updated URL links, plus some new figures and text where progress in the field has been made.The book introduces readers to fundamental concepts in molecular biology and engineering and then explores the two major themes for synthetic biology, namely 'bottom-up' and 'top-down' engineering approaches. 'Top-down' engineering uses a conceptual framework of systematic design and engineering principles focused around the Design-Build-Test cycle and mathematical modelling. The 'bottom-up' approach involves the design and building of synthetic protocells using basic chemical and biochemical building blocks from scratch exploring the fundamental basis of living systems.Examples of cutting-edge applications designed using synthetic biology principles are presented, including: The book also describes the Internationally Genetically Engineered Machine (iGEM) competition, which brings together students and young researchers from around the world to carry out summer projects in synthetic biology. Finally, the primer includes a chapter on the ethical, legal and societal issues surrounding synthetic biology, illustrating the integration of social sciences into synthetic biology research.Final year undergraduates, postgraduates and established researchers interested in learning about the interdisciplinary field of synthetic biology will benefit from this up-to-date primer on synthetic biology.




Synthetic


Book Description

In the final years of the twentieth century, emigres from mechanical and electrical engineering and computer science resolved that if the aim of biology was to understand life, then making life would yield better theories than experimentation. Sophia Roosth, a cultural anthropologist, takes us into the world of these self-named synthetic biologists who, she shows, advocate not experiment but manufacture, not reduction but construction, not analysis but synthesis. Roosth reveals how synthetic biologists make new living things in order to understand better how life works. What we see through her careful questioning is that the biological features, theories, and limits they fasten upon are determined circularly by their own experimental tactics. This is a story of broad interest, because the active, interested making of the synthetic biologists is endemic to the sciences of our time."




The Emergence of Life


Book Description

The origin of life from inanimate matter has been the focus of much research for decades, both experimentally and philosophically. Luisi takes the reader through the consecutive stages from prebiotic chemistry to synthetic biology, uniquely combining both approaches. This book presents a systematic course discussing the successive stages of self-organisation, emergence, self-replication, autopoiesis, synthetic compartments and construction of cellular models, in order to demonstrate the spontaneous increase in complexity from inanimate matter to the first cellular life forms. A chapter is dedicated to each of these steps, using a number of synthetic and biological examples. With end-of-chapter review questions to aid reader comprehension, this book will appeal to graduate students and academics researching the origin of life and related areas such as evolutionary biology, biochemistry, molecular biology, biophysics and natural sciences.