System Dependability and Analytics


Book Description

This book comprises chapters authored by experts who are professors and researchers in internationally recognized universities and research institutions. The book presents the results of research and descriptions of real-world systems, services, and technologies. Reading this book, researchers, professional practitioners, and graduate students will gain a clear vision on the state of the art of the research and real-world practice on system dependability and analytics. The book is published in honor of Professor Ravishankar K. Iyer, the George and Ann Fisher Distinguished Professor in the Department of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois. Professor Iyer is ACM Fellow, IEEE Fellow, AAAS Fellow, and served as Interim Vice Chancellor of UIUC for research during 2008–2011. The book contains chapters written by many of his former students.




Reliability and Availability Engineering


Book Description

Learn about the techniques used for evaluating the reliability and availability of engineered systems with this comprehensive guide.







Reliability of Computer Systems and Networks


Book Description

With computers becoming embedded as controllers in everything from network servers to the routing of subway schedules to NASA missions, there is a critical need to ensure that systems continue to function even when a component fails. In this book, bestselling author Martin Shooman draws on his expertise in reliability engineering and software engineering to provide a complete and authoritative look at fault tolerant computing. He clearly explains all fundamentals, including how to use redundant elements in system design to ensure the reliability of computer systems and networks. Market: Systems and Networking Engineers, Computer Programmers, IT Professionals.




Applied Reliability Engineering and Risk Analysis


Book Description

This complete resource on the theory and applications of reliability engineering, probabilistic models and risk analysis consolidates all the latest research, presenting the most up-to-date developments in this field. With comprehensive coverage of the theoretical and practical issues of both classic and modern topics, it also provides a unique commemoration to the centennial of the birth of Boris Gnedenko, one of the most prominent reliability scientists of the twentieth century. Key features include: expert treatment of probabilistic models and statistical inference from leading scientists, researchers and practitioners in their respective reliability fields detailed coverage of multi-state system reliability, maintenance models, statistical inference in reliability, systemability, physics of failures and reliability demonstration many examples and engineering case studies to illustrate the theoretical results and their practical applications in industry Applied Reliability Engineering and Risk Analysis is one of the first works to treat the important areas of degradation analysis, multi-state system reliability, networks and large-scale systems in one comprehensive volume. It is an essential reference for engineers and scientists involved in reliability analysis, applied probability and statistics, reliability engineering and maintenance, logistics, and quality control. It is also a useful resource for graduate students specialising in reliability analysis and applied probability and statistics. Dedicated to the Centennial of the birth of Boris Gnedenko, renowned Russian mathematician and reliability theorist




Predictive Analytics in System Reliability


Book Description

This book provides engineers and researchers knowledge to help them in system reliability analysis using machine learning, artificial intelligence, big data, genetic algorithm, information theory, multi-criteria decision making, and other techniques. It will also be useful to students learning reliability engineering. The book brings readers up to date with how system reliability relates to the latest techniques of AI, big data, genetic algorithm, information theory, and multi-criteria decision making and points toward future developments in the subject.




Reliability Assessment of Safety and Production Systems


Book Description

This book provides, as simply as possible, sound foundations for an in-depth understanding of reliability engineering with regard to qualitative analysis, modelling, and probabilistic calculations of safety and production systems. Drawing on the authors’ extensive experience within the field of reliability engineering, it addresses and discusses a variety of topics, including: • Background and overview of safety and dependability studies; • Explanation and critical analysis of definitions related to core concepts; • Risk identification through qualitative approaches (preliminary hazard analysis, HAZOP, FMECA, etc.); • Modelling of industrial systems through static (fault tree, reliability block diagram), sequential (cause-consequence diagrams, event trees, LOPA, bowtie), and dynamic (Markov graphs, Petri nets) approaches; • Probabilistic calculations through state-of-the-art analytical or Monte Carlo simulation techniques; • Analysis, modelling, and calculations of common cause failure and uncertainties; • Linkages and combinations between the various modelling and calculation approaches; • Reliability data collection and standardization. The book features illustrations, explanations, examples, and exercises to help readers gain a detailed understanding of the topic and implement it into their own work. Further, it analyses the production availability of production systems and the functional safety of safety systems (SIL calculations), showcasing specific applications of the general theory discussed. Given its scope, this book is a valuable resource for engineers, software designers, standard developers, professors, and students.




Dependability of Engineering Systems


Book Description

This book is intended to provide the interested reader with basic information on various issues of the dependability analysis and evaluation of engineering systems with the principal goal to help the reader perform such an analysis and evaluation. By the definition of the IEC International Standard 50(191) dependability is the collective term used to describe the availability peiformance and its influencing factors: reliability peiformance, maintainability peiformance and maintenance support performance. Dependability is a term used for a general description of system performance but not a quality which could be expressed by a single quantitative measure. There are several other quantitative terms, such as reliability, unreliability, time-specific and steady-state availability and unavailability, which together form a basis for evaluating the dependability of a system. A system is taken as dependable if it satisfies all requirements of the customers with regard to various dependability performances and indices. The dependability deals with failures, repairs, preventive maintenance as well as with costs associated with investment and service interruptions or mission failures. Therefore, it is a very important attribute of system quality. The dependability evaluation is strongly based upon experience and statistical data on the behavior of a system and of its elements. Using past experience with the same or similar systems and elements, the prospective operation may be predicted and improved designs and constructions can be conceived. Hence, the dependability analysis makes it possible to learn from the past for better future solutions.




System Reliability Management


Book Description

This book provides the latest research advances in the field of system reliability assurance and engineering. It contains reference material for applications of reliability in system engineering, offering a theoretical sound background with adequate numerical illustrations. Included are concepts pertaining to reliability analysis, assurance techniques and methodologies, tools, and practical applications of system reliability modeling and allocation. The collection discusses various soft computing techniques like artificial intelligence and particle swarm optimization approach for reliability assessment. Importance of differentiating between the optimal release time and testing stop time of the software has been explicitly discussed and presented in the book. Features: Creates understanding of the costs associated with complex systems Covers reliability measurement of engineering systems Incorporates an efficient effort-based expenditure policy incorporating cost and reliability criteria Provides information for optimal testing stop and release time of software system Presents software performance and security layout Addresses reliability prediction and its maintenance through advanced analytics techniques Overall, System Reliability Management: Solutions and Techniques is a collaborative and interdisciplinary approach for better communication of problems and solutions to increase the performance of the system for better utilization and resource management.




Practical Reliability Engineering and Analysis for System Design and Life-Cycle Sustainment


Book Description

In today's sophisticated world, reliability stands as the ultimate arbiter of quality. An understanding of reliability and the ultimate compromise of failure is essential for determining the value of most modern products and absolutely critical to others, large or small. Whether lives are dependent on the performance of a heat shield or a chip in a lab, random failure is never an acceptable outcome. Written for practicing engineers, Practical Reliability Engineering and Analysis for System Design and Life-Cycle Sustainment departs from the mainstream approach for time to failure-based reliability engineering and analysis. The book employs a far more analytical approach than those textbooks that rely on exponential probability distribution to characterize failure. Instead, the author, who has been a reliability engineer since 1970, focuses on those probability distributions that more accurately describe the true behavior of failure. He emphasizes failure that results from wear, while considering systems, the individual components within those systems, and the environmental forces exerted on them. Dependable Products Are No Accident: A Clear Path to the Creation of Consistently Reliable Products Taking a step-by-step approach that is augmented with current tables to configure wear, load, distribution, and other essential factors, this book explores design elements required for reliability and dependable systems integration and sustainment. It then discusses failure mechanisms, modes, and effects--as well as operator awareness and participation--and also delves into reliability failure modeling based on time-to-failure data considering a variety of approaches. From there, the text demonstrates and then considers the advantages and disadvantages for the stress-strength analysis approach, including various phases of test simulation. Taking the practical approach still further, the author covers reli