Health Assessment Of Engineered Structures: Bridges, Buildings And Other Infrastructures


Book Description

Health Assessment of Engineered Structures has become one of the most active research areas and has attracted multi-disciplinary interest. Since available financial recourses are very limited, extending the lifespan of existing bridges, buildings and other infrastructures has become a major challenge to the engineering profession world-wide. Some of its related areas are only in their development phase. As the study of structural health assessment matures, more new areas are being identified to complement the concept.This book covers some of the most recent developments (theoretical and experimental) and application potentials in structural health assessment. It is designed to present currently available information in an organised form to interested parties who are not experts in the subject.Each chapter is authored by the most active scholar(s) in the area. After discussing the general concept, various currently available methods of structural health assessment (such as the use of smart sensors) are presented. Health Assessment discusses the following: sensor types, platforms and data conditioning for practical applications; wireless collection of sensor data, sensor power needs and on-site energy harvesting; and long term monitoring of structures. Uncertainty in collected data is also extensively addressed. A chapter discussing future directions in structural health assessment is also included.




Ambient vibration studies for system identification of civil structures


Book Description

Civil infrastructure undergoes various and consistent loads during its lifecycles, such as wind, seismic loads, and etc. The declining condition, the performance of the structure and the potential consequential damages due to the loads become critical in most industrialized countries (Spencer et al., 2016). Therefore, during decades, efforts have been made to understand the serviceability of the structure. Because the behavior of a structure depends on stiffness and mass distribution, the structure may have been examined through finite element models. However, because the aged structure show changed condition, such a method often fail to predict the fundamental characteristics of the structure precisely. Alternatively, the driving interests have been made to develop a non-destructive tool that can estimate the characteristics of an in-service structure, which one among various is known as Structural Health Monitoring.




Innovative Methods and Materials in Structural Health Monitoring of Civil Infrastructures


Book Description

In the past, when elements in structures were composed of perishable materials, such as wood, the maintenance of houses, bridges, etc., was considered of vital importance for their safe use and to preserve their efficiency. With the advent of materials such as reinforced concrete and steel, given their relatively long useful life, periodic and constant maintenance has often been considered a secondary concern. When it was realized that even for structures fabricated with these materials that the useful life has an end and that it was being approached, planning maintenance became an important and non-negligible aspect. Thus, the concept of structural health monitoring (SHM) was introduced, designed, and implemented as a multidisciplinary method. Computational mechanics, static and dynamic analysis of structures, electronics, sensors, and, recently, the Internet of Things (IoT) and artificial intelligence (AI) are required, but it is also important to consider new materials, especially those with intrinsic self-diagnosis characteristics, and to use measurement and survey methods typical of modern geomatics, such as satellite surveys and highly sophisticated laser tools.




Vehicle Scanning Method for Bridges


Book Description

Presents the first ever guide for vehicle scanning of the dynamic properties of bridges Written by the leading author on the subject of vehicle scanning method (VSM) for bridges, this book allows engineers to monitor every bridge of concern on a regular and routine basis, for the purpose of maintenance and damage detection. It includes a review of the existing literature on the topic and presents the basic concept of extracting bridge frequencies from a moving test vehicle fitted with vibration sensors. How road surface roughness affects the vehicle scanning method is considered and a finite element simulation is conducted to demonstrate how surface roughness affects the vehicle response. Case studies and experimental results are also included. Vehicle Scanning Method for Bridges covers an enhanced technique for extracting higher bridge frequencies. It examines the effect of road roughness on extraction of bridge frequencies, and looks at a dual vehicle technique for suppressing the effect of road roughness. A filtering technique for eliminating the effect of road roughness is also presented. In addition, the book covers the identification of bridge mode shapes, contact-point response for modal identification of bridges, and damage detection of bridges—all through the use of a moving test vehicle. The first book on vehicle scanning of the dynamic properties of bridges Written by the leading author on the subject Includes a state-of-the-art review of the existing works on the vehicle scanning method (VSM) Presents the basic concepts for extracting bridge frequencies from a moving test vehicle fitted with vibration sensors Includes case studies and experimental results The first book to fully cover scanning the dynamic properties of bridges with a vehicle, Vehicle Scanning Method for Bridges is an excellent resource for researchers and engineers working in civil engineering, including bridge engineering and structural health monitoring.




Computational Structural Dynamics and Earthquake Engineering


Book Description

The increasing necessity to solve complex problems in Structural Dynamics and Earthquake Engineering requires the development of new ideas, innovative methods and numerical tools for providing accurate numerical solutions in affordable computing times. This book presents the latest scientific developments in Computational Dynamics, Stochastic Dynam




Bridge Maintenance, Safety, Management, Resilience and Sustainability


Book Description

Bridge Maintenance, Safety, Management, Resilience and Sustainability contains the lectures and papers presented at The Sixth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2012), held in Stresa, Lake Maggiore, Italy, 8-12 July, 2012. This volume consists of a book of extended abstracts (800 pp) Extensive collection of revised expert papers on recent advances in bridge maintenance, safety, management and life-cycle performance, representing a major contribution to the knowledge base of all areas of the field.




Finite Element Model Updating Using Computational Intelligence Techniques


Book Description

FEM updating allows FEMs to be tuned better to reflect measured data. It can be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. This book applies both strategies to the field of structural mechanics, using vibration data. Computational intelligence techniques including: multi-layer perceptron neural networks; particle swarm and GA-based optimization methods; simulated annealing; response surface methods; and expectation maximization algorithms, are proposed to facilitate the updating process. Based on these methods, the most appropriate updated FEM is selected, a problem that traditional FEM updating has not addressed. This is found to incorporate engineering judgment into finite elements through the formulations of prior distributions. Case studies, demonstrating the principles test the viability of the approaches, and. by critically analysing the state of the art in FEM updating, this book identifies new research directions.




System Identification 2003


Book Description

The scope of the symposium covers all major aspects of system identification, experimental modelling, signal processing and adaptive control, ranging from theoretical, methodological and scientific developments to a large variety of (engineering) application areas. It is the intention of the organizers to promote SYSID 2003 as a meeting place where scientists and engineers from several research communities can meet to discuss issues related to these areas. Relevant topics for the symposium program include: Identification of linear and multivariable systems, identification of nonlinear systems, including neural networks, identification of hybrid and distributed systems, Identification for control, experimental modelling in process control, vibration and modal analysis, model validation, monitoring and fault detection, signal processing and communication, parameter estimation and inverse modelling, statistical analysis and uncertainty bounding, adaptive control and data-based controller tuning, learning, data mining and Bayesian approaches, sequential Monte Carlo methods, including particle filtering, applications in process control systems, motion control systems, robotics, aerospace systems, bioengineering and medical systems, physical measurement systems, automotive systems, econometrics, transportation and communication systems*Provides the latest research on System Identification*Contains contributions written by experts in the field*Part of the IFAC Proceedings Series which provides a comprehensive overview of the major topics in control engineering.




Structural Health Monitoring 2006


Book Description

These proceedings of the Third European Workshop on Structural Health Monitoring held at the Conference Centre in Granada, Spain, in July of 2006 includes four keynote presentations and 170 technical papers written by an international group of contributors. Papers discuss technology and activities related to damage detection and evaluation in engin




Smart Civil Structures


Book Description

A smart civil structure integrates smart materials, sensors, actuators, signal processors, communication networks, power sources, diagonal strategies, control strategies, repair strategies, and life-cycle management strategies. It should function optimally and safely in its environment and maintain structural integrity during strong winds, severe earthquakes, and other extreme events. This book extends from the fundamentals to the state-of-the-art. It covers the elements of smart civil structures, their integration, and their functions. The elements consist of smart materials, sensors, control devices, signal processors, and communication networks. Integration refers to multi-scale modelling and model updating, multi-type sensor placement, control theory, and collective placement of control devices and sensors. And the functions include structural health monitoring, structural vibration control, structural self-repairing, and structural energy harvesting, with emphasis on their synthesis to form truly smart civil structures. It suits civil engineering students, professionals, and researchers with its blend of principles and practice.