System-in-Package


Book Description

Surveys the electrical and layout perspectives of System-in-Package, the system integration technology that has emerged as a required technology to reduce the system board space and height in addition to the overall time-to-market and design cost of consumer electronics products such as those of cell phones, audio/video players and digital cameras.




SiP System-in-Package Design and Simulation


Book Description

An advanced reference documenting, in detail, every step of a real System-in-Package (SiP) design flow Written by an engineer at the leading edge of SiP design and implementation, this book demonstrates how to design SiPs using Mentor EE Flow. Key topics covered include wire bonding, die stacks, cavity, flip chip and RDL (redistribution layer), Embedded Passive, RF design, concurrent design, Xtreme design, 3D real-time DRC (design rule checking), and SiP manufacture. Extensively illustrated throughout, System in Package Design and Simulation covers an array of issues of vital concern for SiP design and fabrication electronics engineers, as well as SiP users, including: Cavity and sacked dies design FlipChip and RDL design Routing and coppering 3D Real-Time DRC check SiP simulation technology Mentor SiP Design and Simulation Platform Designed to function equally well as a reference, tutorial, and self-study, System in Package Design and Simulation is an indispensable working resource for every SiP designer, especially those who use Mentor design tools.







System on Package


Book Description

System-on-Package (SOP) is an emerging microelectronic technology that places an entire system on a single chip-size package. Where “systems” used to be bulky boxes housing hundreds of components, SOP saves interconnection time and heat generation by keep a full system with computing, communications, and consumer functions all in a single chip. Written by the Georgia Tech developers of the technology, this book explains the basic parameters, design functions, and manufacturing issues, showing electronic designers how this radical new packaging technology can be used to solve pressing electronics design challenges.




Semiconductor Advanced Packaging


Book Description

The book focuses on the design, materials, process, fabrication, and reliability of advanced semiconductor packaging components and systems. Both principles and engineering practice have been addressed, with more weight placed on engineering practice. This is achieved by providing in-depth study on a number of major topics such as system-in-package, fan-in wafer/panel-level chip-scale packages, fan-out wafer/panel-level packaging, 2D, 2.1D, 2.3D, 2.5D, and 3D IC integration, chiplets packaging, chip-to-wafer bonding, wafer-to-wafer bonding, hybrid bonding, and dielectric materials for high speed and frequency. The book can benefit researchers, engineers, and graduate students in fields of electrical engineering, mechanical engineering, materials sciences, and industry engineering, etc.




Embedded and Fan-Out Wafer and Panel Level Packaging Technologies for Advanced Application Spaces


Book Description

Discover an up-to-date exploration of Embedded and Fan-Out Waver and Panel Level technologies In Embedded and Fan-Out Wafer and Panel Level Packaging Technologies for Advanced Application Spaces: High Performance Compute and System-in-Package, a team of accomplished semiconductor experts delivers an in-depth treatment of various fan-out and embedded die approaches. The book begins with a market analysis of the latest technology trends in Fan-Out and Wafer Level Packaging before moving on to a cost analysis of these solutions. The contributors discuss the new package types for advanced application spaces being created by companies like TSMC, Deca Technologies, and ASE Group. Finally, emerging technologies from academia are explored. Embedded and Fan-Out Wafer and Panel Level Packaging Technologies for Advanced Application Spaces is an indispensable resource for microelectronic package engineers, managers, and decision makers working with OEMs and IDMs. It is also a must-read for professors and graduate students working in microelectronics packaging research.




Systems-Level Packaging for Millimeter-Wave Transceivers


Book Description

This book provides a system-level approach to making packaging decisions for millimeter-wave transceivers. In electronics, the packaging forms a bridge between the integrated circuit or individual device and the rest of the electronic system, encompassing all technologies between the two. To be able to make well-founded packaging decisions, researchers need to understand a broad range of aspects, including: concepts of transmission bands, antennas and propagation, integrated and discrete package substrates, materials and technologies, interconnects, passive and active components, as well as the advantages and disadvantages of various packages and packaging approaches, and package-level modeling and simulation. Packaging also needs to be considered in terms of system-level testing, as well as associated testing and production costs, and reducing costs. This peer-reviewed work contributes to the extant scholarly literature by addressing the aforementioned concepts and applying them to the context of the millimeter-wave regime and the unique opportunities that this transmission approach offers.




Advances in Embedded and Fan-Out Wafer Level Packaging Technologies


Book Description

Examines the advantages of Embedded and FO-WLP technologies, potential application spaces, package structures available in the industry, process flows, and material challenges Embedded and fan-out wafer level packaging (FO-WLP) technologies have been developed across the industry over the past 15 years and have been in high volume manufacturing for nearly a decade. This book covers the advances that have been made in this new packaging technology and discusses the many benefits it provides to the electronic packaging industry and supply chain. It provides a compact overview of the major types of technologies offered in this field, on what is available, how it is processed, what is driving its development, and the pros and cons. Filled with contributions from some of the field's leading experts,Advances in Embedded and Fan-Out Wafer Level Packaging Technologies begins with a look at the history of the technology. It then goes on to examine the biggest technology and marketing trends. Other sections are dedicated to chip-first FO-WLP, chip-last FO-WLP, embedded die packaging, materials challenges, equipment challenges, and resulting technology fusions. Discusses specific company standards and their development results Content relates to practice as well as to contemporary and future challenges in electronics system integration and packaging Advances in Embedded and Fan-Out Wafer Level Packaging Technologies will appeal to microelectronic packaging engineers, managers, and decision makers working in OEMs, IDMs, IFMs, OSATs, silicon foundries, materials suppliers, equipment suppliers, and CAD tool suppliers. It is also an excellent book for professors and graduate students working in microelectronic packaging research.




System-in-package RF Design and Applications


Book Description

In the past few years, System in Package (SiP) design has fueled a revolution in the use of modules in wireless devices due its effectiveness in meeting the increasingly demanding requirements for reliability, shielding, performance, size, and cost. Here's the first comprehensive resource on SiP design techniques that offers designers state-of-the-art packaging know-how. Moreover, the book provides numerous examples that illustrate real-world capabilities, constraints, trade-offs, and options at every step.




Antenna-in-Package Technology and Applications


Book Description

A comprehensive guide to antenna design, manufacturing processes, antenna integration, and packaging Antenna-in-Package Technology and Applications contains an introduction to the history of AiP technology. It explores antennas and packages, thermal analysis and design, as well as measurement setups and methods for AiP technology. The authors—well-known experts on the topic—explain why microstrip patch antennas are the most popular and describe the myriad constraints of packaging, such as electrical performance, thermo-mechanical reliability, compactness, manufacturability, and cost. The book includes information on how the choice of interconnects is governed by JEDEC for automatic assembly and describes low-temperature co-fired ceramic, high-density interconnects, fan-out wafer level packaging–based AiP, and 3D-printing-based AiP. The book includes a detailed discussion of the surface laminar circuit–based AiP designs for large-scale mm-wave phased arrays for 94-GHz imagers and 28-GHz 5G New Radios. Additionally, the book includes information on 3D AiP for sensor nodes, near-field wireless power transfer, and IoT applications. This important book: • Includes a brief history of antenna-in-package technology • Describes package structures widely used in AiP, such as ball grid array (BGA) and quad flat no-leads (QFN) • Explores the concepts, materials and processes, designs, and verifications with special consideration for excellent electrical, mechanical, and thermal performance Written for students in electrical engineering, professors, researchers, and RF engineers, Antenna-in-Package Technology and Applications offers a guide to material selection for antennas and packages, antenna design with manufacturing processes and packaging constraints, antenna integration, and packaging.